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l Earth/planets?

l Rapid rotator (Jerome, 

Keith)
l Low Ekman number E

l Liquid Metal (Stephan)
l Low magnetic Prandlt number 

Pm

l Force balances
l Geostrophic

l Magnetostrophic

l At what scale?

l Stars
l High Rm 

l Very far from critical dynamo

l Very turbulent
l Extremely High Re

l Galaxies
l High Rm

l Not so turbulent



l How can an astrophysical object such as a star or galaxy 

generate a systematic (large-scale) magnetic field at high 
Rm? How can it overcome its tendency to be dominated by 

fluctuations at the small scales?

l How does conservation of magnetic helicity place 

constraints on field generation?

l Understanding breaking of constraints is key.

l Can we derive a (statistical?) theory that describes these 

interactions and maintains quadratic invariants in the limit of 

no dissipation.



u Solar cycle:

u “Large-scale” in space

u Systematic in time

u Spatio-temporal ordering

u Large-scale wave?

High Rm



Dynamo Theory

• Dynamos involve the self-consistent solution of the induction 

and momentum equations of MHD

• A dynamo solution is one where the field remains finite for 

large times.

• Often split into two problems.

• Can a velocity be found for which B grows? Kinematic (if so what is 

form of the field, large-scale or small-scale) kinematic

• How does this generated field interact with the velocity in the 

momentum equation. (what is the amplitude of the generated field?) 

dynamic



Why not just simulate ?

• Imagine you had access to all the computational resources 

you needed?

• How much power would you need to simulate a star?

• Conservative estimates (Kapyla) suggest the required power 

would be 1022W!

• This is the power output of a M9V main sequence red dwarf…



Small-Scale Dynamos

• Small-scale dynamos rely on chaotic stretching and 
reinforcement of the field (see e.g. Childress & Gilbert 

1995)

• More coherent (in time) the velocity the better the stretching 

(usually)

• Any sufficiently chaotic flow will tend to generate 
magnetic field on the resistive scale.

• Interesting questions do remain…

• e.g. Low Pm problem. 

• What happens when magnetic field dissipates in inertial range of the 

turbulence? (see Stephan’s talks)

• Coherent structures versus random flows (high Kubo vs low 
Kubo)



Small-scale Dynamos at a single scale 

l For a velocity field 
imposed at a finite scale

l Competition between 

stretching and diffusion.

l If stretching strong 

enough and coherent 

enough get exponential 

growth of field.

l Field is usually amplified 

at small scales 

− Resistive scale

Note:This flow lacks reflexional symmetry (helical)
And should be a good large-scale dynamo
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Small-scale Dynamos at a single scale 
l Field is amplified on local turnover time of the flow

l Independent of diffusion as Rm gets large (fast)

l Relies on 

l Chaotic stretching of magnetic fieldlines by velocity

l Measured by the finite time Lyapunov exponent

l Not too much cancellation

l measured by the cancellation exponent (Ott et al 1992, Du & Ott

1993)
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Growth-rates for dynamos at a 
single scale

•A fast dynamo is  has an asymptotic growth rate as Rm gets large

•We define high Rm to be well into “the green zone”

•Certainly the case for astrophysical flows

•Not usually true for numerical simulations (if we are talking about small-scale flows)
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Two important Ratios

1

1 ~10

= σ ⁄ σ★ ⁄ χ
Rm =

σ
χ

χ
Rm

σ
χ

• In a cascade of eddies  at large Kubo number the growth-rate is determined by the 
small-scale stretching of the eddy with the fastest turnover time that has Χ > 1 

(Tobias & Cattaneo 2008)



Large-Scale Dynamos

• Large-scale dynamos rely on lack of reflexional
symmetry (parity/symmetry breaking)

• Note field may also be generated on a “large-scale” 

via a large-scale flow.

• This relies on correlations between the small-

scale flow and magnetic field leading to the 
generation of net emf. 

• Phase between field and flow is therefore important

• Makes this a more sensitive type of dynamo than the 
small-scale dynamo which will exist in any sufficiently 

turbulent flow.



Mean Field Electrodynamics
(see e.g Krause & Raedler 1980, Brandenburg & Subramanian 2005, Moffatt & Dormy 2019, Tobias 2019)



Mean Field Electrodynamics
(see e.g Krause & Raedler 1980, Brandenburg &  Subramanian 2005, Moffatt & Dormy 2019, Tobias 2019)



1st Order Smoothing



1st Order Smoothing

Helicity
broken 

reflectional
symmetry

important



A Historical Aside…

?

l Conservation of Helicity

l Often attributed to Moreau 
(1961) Moffatt (1969) 

l Important results concerning 
topological nature of 

l See e.g. Berger & Field 
(1984)

l Simplest result concerning 
conservation of kinetic 
helicity for incompressible 
Euler was discovered 
earlier.



A Historical Aside…

l Conservation of Helicity

l Often attributed to Moreau 
(1961) Moffatt (1969) 

l Important results concerning 
topological nature of 

l See e.g. Berger & Field 
(1984)

l Simplest result concerning 
conservation of kinetic 
helicity for incompressible 
Euler was discovered 
earlier.

l Feynman, Folder 76.14 
“Turbulence” (courtesy L. 
Kadanov, G. Eyink)



Why are mean field models popular?

l Solution of mean field 
models for plausible solar 
differential rotation and 
turbulent transport 
coefficients can give solar-
like behaviour

l Interaction of oscillatory 
dipole and quadrupole
modes can lead to 
modulation and symmetry 
breaking.

l Construction of low-order 
models are possible 
(Knobloch et al 1998)

Tobias 1998



Large-scale versus small-scale: Kinematic considerations

l Some small-scale dynamos (e.g. Galloway Proctor) have 

the ingredients required to be a large-scale dynamo

l Lack of reflexional symmetry in the flow

l Leads to the generation of a mean EMF

l However at high RRm (in the green zone - and even in the 
amber zone) the large-scale magnetic field generated by this 
EMF is completely dominated by the small-scale fluctuations 
provided by the small-scale dynamo (cf Cattaneo & Hughes 2006, Tobias & 

Cattaneo 2015)

l One idea is to use a shear flow to “boost” the EMF (and indeed 
the dynamo growth) via one of many effects (shear-current 
effect etc) (see e.g. Yousef et al 2008, Käpylä & Brandenburg 2009, Sridhar & 

Singh 2010, Hughes & Proctor 2013)

l An alternative is to use a shear to control the 
fluctuations

E = ⇥u0 � b
0⇤



High Rm effects of shear 

l Need to get to very high Rm (so growth-rate is asymptotic for small-scale flow.)

l Very hard to do in 3D flow.

l Resolutions up to 40962

l Use multi-scale generalisation of the CT2005 flow (2.5 D)

l Velocity amplitude decreases with scale; shear rate and turnover frequency increase with 
scale

l Scale dependent renewal time
l comparable with local turnover time (in asymptotic regime)

l much shorter than local turnover time (poor dynamo)

+ +…

Rmk =
Uk

kη
≈ 2500Rms ≈ 0 → 10

5

Tobias & Cattaneo (2013, Nature) Cattaneo & Tobias (2014 ApJ) 



No shear: long correlation time

l Great small-scale dynamo (no real surprise)

l Filamentary field with 

l Length comparable to scale of velocity

l Width controlled by diffusion

l Overall pattern changes on the turnover time

l Comparable with correlation time
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No shear: Long correlation time

l No systematic large-scale behaviour

l E.g. average Bx over x and plot as a function of y and t

l Can also construct a velocity field with no net helicity when 
averaged over time

l This has comparable growth-rate as a small-scale dynamo

l Similar stretching, similar cancellation, similar pictures…
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With shear…
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Suppression of fluctuations by shear
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Variance of EMF is a simple function
of shear rate; (also depends on Rm)

(Tobias & Cattaneo 2014)



What does mean field theory get right in the kinematic 
regime? (Nigro et al MNRAS 2017)

• Derivation of mean-field equations is done 
by a filtering procedure.

• Would like the application of the filter to 

the eigenfunctions of the full equations to 
correspond to the eigenfunctions of the 

filtered equations.

• Would also like the growth-rate to match…
• However, this is controlled by the stretching of 

the eddies with the fastest turnover time and 

Rm>Rmc (Tobias & Cattaneo 2008)

• However, in presence of shear
• In the case where shear breaks the isotropy of 

the filtered equations and also the isotropy of the 
statistics of the velocity

• Symmetry breaking acts so as to perturb 
frequency of solutions away from zero and is 

controlled by the change in symmetry of large 

scales.

• In this case MFT does get this frequency correct

• Gives hope for statistical theories in  the 

nonlinear regime where the small-scale growth 

has saturated.

Phase coherent dynamo wave

incoherent smaller scale field



Catastrophic  Quenching?
Vainshtein & Cattaneo (1992), 

• Assume we can generate a growing kinematic 
magnetic field.

• At what level does this saturate in the nonlinear 

regime
• What is the form of the quenching of the turbulent

transport coefficients.
• Assume begins to equilibrate when mean field 

energy comes into equipartition with turbulent kinetic

energy.  Then…



Catastrophic  Quenching?
Vainshtein & Cattaneo (1992), 

• However that assumes magnetic energy is 
dominated by large scales.

• If there is a mean field, turbulence will amplify  this 

into small scales, until ratio is large. Can only get rid 
of small scales via diffusion so ratio will depend on 

Rm.
• Transport coefficients become quenched when 

energy in small-scale field is in equipartition, i.e.

• Formal proof for turbulent diffusion in 2D.

• Bad news for mean-field dynamos.



Conservation of magnetic helicity

Various choices of gauge are possible, e.g.

Coulomb gauge:

Winding Gauge:

(Prior & Yeates 2014)

Volume dissipation Surface

Flux 

Defined up to a gauge:



Celebrating 25 years of GD94!

Pouquet, Frisch & Leorat (1976)

Combine 3 exact results

With one result from a nMHD closure (EDQNM)

In a closed system (FS=0) to yield…



• Physically this can be understood that if you want to 
grow large-scale magnetic helicity, you must get rid of

the small-scale magnetic helicity.

• Can only do this in a closed system on a diffusive
timescale

• Helicity fluxes can potentially alleviate the effects of

catastrophic α-quenching.
• Losing helicity through the boundary at a rate

independent of resistivity introduces irreversability

• on what timescale can you do this?

In presence of mean current



Nonlinear formulation with helicity fluxes
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Results

Choose S=0,1,5
k~6

Re~1

χ=Rm/Rmc ~ 10,20,40
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Results for large shear: low Rm χ=10
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Results for large shear: low Rm χ=10

• Short kinematic phase
– large growth rate comparable with the turnover frequency of the 

little eddies 

– Dominated by propagating waves with ky=2 and high phase 
velocity(approx 0.13). 

• Saturated Phase 
– Invariant manifold. 

– Velocity is not y-independent but, nevertheless, no mean By or 
Bx can be generated. 

– symmetry between B(odd) and u(even). In this state the 

– Lorentz force has a big projection on ky=0 and it can eciently
wipe out the shear. Velocity remains nearly y-independent.

– the rate of doing work is large

• High magnetic energy, little shear, slow propagation 
velocity, ky=2 for the dynamo wave solution.



Results for large shear: low Rm χ=10
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Results for large shear: moderate Rm χ=20
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Results for large shear: moderate Rm χ=20

• Initially similar evolution

• Invariant manifold becomes unstable (eventually) 

• Wave solution is re-established, but now with ky=1.

• Lorentz force loses most of its projection onto ky=0,

– No longer able to suppress the shear, and the latter comes back 

– Being out of invariant manifold implies that the dynamo can generate 

<By> and <Bx>, 

– Cycles appear superposed on the wave solution in which the velocity is 
mostly in the y-direction and then mostly not. 

– Beginning of the cycle 
• velocity is close to being y-independent, there is a lot of alignment between F and U and 

sustains the growth of the  field-everything grows.

– Middle of cycle
• Lorentz force still has a projection on Ky=0 and begins to suppress the shear. thiLorentz

force stops projecting mostly on Ky=0, thus it loses the ability to reduce the shear. 

– End of cycle 
• The velocity moves away from y-independence.

• B moves to lower wavenumbers (i.e. larges cales). We know that J.B and JXB both 
decrease at the same rate (i.e. no change of angle)
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Results for large shear: moderate Rm χ=20
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Results for large shear: large Rm χ=40

• Similar evolution to χ=20

• Same dynamics but on a 

Longer timescale
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Helicity Fluxes 

• In kinematic regime: diffusive body flux wins

• At cycle peak ideal flux starts to dominate

• Rm is not high enough for ideal flux to dominate over 
diffusive flux (higher Rm runs in progress/needed)

• At fixed shear doubling Rm

– halves the diffusive flux (not surprisingly!)

– Lasts for twice as long (perhaps surprisingly)

– Gets the job done  - but on a long timescale? 

• Does ideal flux ever take over from diffusive flux?

– Hubbard & Brandenburg (2010), Del Sordo et al (2013)

– Diffusive flux decreases faster than ideal flux with Rm
• But low Rm, Χ= Rm/Rmc



What to do…what to do?
• Transport is usually evaluated via closure models that are to 

first order homogeneous and isotropic (see Yokoi 2019)
– Quasi-Normal Models

– EDQNM

– DIA

– TSDIA

• It is hard to build in conservation of quadratic invariants 
(such as kinetic helicity and energy in hydro) and (cross 
helicity, magnetic helicity and energy in MHD).

• An alternative is to derive  and solve evolution equations for 
the statistics (Direct Statistical Simulation, see e.g. Marston et 
al 2019, in Zonal Jets, eds Galperin & Read) that
– Don’t assume homogeneity and isotropy

– Ensure conservation of global quadratic invariants (via triad 
decimation in pairs Kraichnan 1985)

• Treat magnetic field and velocity on an equal footing…



Conclusions

1. Small-scale dynamos put energy at the resistive scale

• Rely on exponential stretching.

• Fast dynamos work as Rm à infinity

2. Large-scale dynamos rely on breaking of reflectional symmetry 

• presence of pseudo-scalar kinetic helicity/PT symm breaking

3. Shear can help large-scale win out over small-scale kinematically

• It suppresses the small-scale dynamo at high Rm

4. Catastrophic quenching can be understood in terms of helicity
conservation

• Wrong to think helicity conservation causes catastrophic quenching

5. Not clear that helicity fluxes alleviate slow resistive growth of 
essentially kinematic dynamos

• need more efficient dynamos or simulations to get to higher Rm

6. Maybe the answer is to examine essentially nonlinear dynamos (T., 
Cattaneo & Brummell 2011).

• velocity fluctuations and magnetic field perturbations emerge from an 
instability of a large-scale field (see e.g. Riols et al 2013).

• Then they should keep correlated even at high Rm.


