L2: Observations of Stars

T.M. Rogers Waves, Instabilities and Turbulence in GAFD, 8-14 July 2019 Cargese

© Pieter Degroote, K.U.Leuven, Belgium

Solar Neutrinos Mixing in Stors Temperature at which Li/B burns Li DEPLETION IN F STARS **RADIATIVE AND OTHER EFFECTS FROM INTERNAL WAVES** RAM IN SOLAR AND STELLAR INTERIORS¹ Instituto de Astrofísica WILLIAM H. PRESS Harvard-Smithsonian Center for Astrophysics; and Department of Physics, Harvard University Max-Planck-Institut für Astrophysik, Karl-Schw Received 1980 March 31; accepted 1980 October 16 Recei Mixing by internal waves **Orbits of Binary Stars** tation I. Lithium depletion in the Sun The Dynamical Tide in Close Binaries J. Montalbán ON E MAIN-SEQUENCE STARS J.-P. Zahn DASGAL, Observatoire de Paris-Meudon, F-92195 Mei don, Fr Observatoire de Nice, and Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder MESIOA::MONTALBAN (SPAN) ewcastle University, UK n, AZ 85721, USA Received February 24, 1975 Received April 5, accepted July 8, 1993 vember 10; published 2015 December 18 TIDAL FRICTION IN EARLY-TYPE STARS PETER GOLDREICH California Institute of Technology Uniform Rotation of Solar Interior Until very receptional observational constraints about mixing/angular Macroturpulence Angular momentum transport by internar in the solar interior momentum transport in stars came Jean-Paul Zahn¹, Suzanne Talon¹, and José Matias^{1,2} Département d'Astrophysique Stellaire et Galactique, Observatoire de Paris, Section de Meudo. The section de Meudo. Internet d'Astrophysique Stellaire et Galactique, Observatoire de Paris, Section de Meudo. Section de Meudo. (zahn@obspm.fr, talon@obspm.fr, Jose.Matias@mail.telepac.pt) Meudon, France 2 from Astrophysics, IVARS, Indones University Remigan, PO No. 400, e00111. A graphic rotatib the NATIONAL STREET ¹ Universities Storike te, Schulertinaer III-SLVA, Manchell, Germany (Universities Storike te, Schulertinaer III-SLVA, Manchell, Germany (Université de Liège a Bérda Sis Avat 17, 18-4000 Liège) ANGULAR MOMENTUM REDISTRIBUTION BY WAVES IN THE SUM í(B)n Balan PAWAR KUMAR,^{1,2} SUZANNE TALON,⁴ AND JEAN-PAUL ZAHN⁵ Observatoire de Paris (LESIA) é place Jules January, 90,69 Monden Frincipal Course France Received 1998 June 23; accepted 1999 March 5 A(Li OBSERVATIONAL SIGNATION OF CONVERTICEN WAVES IN MASSIVE STARS 2 **Be Stars** G stars Solar Abres Clessifier law 2000,000 Leven Belgium an ² Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands Wave-rotation interaction and episodic mass-loss in Be stars ³Department of Mathematics and Statistics, Newcastle Unive COMPartary Science Institute, Tucsvi, All Received 2015 April 30: accepted 2015 May 25: mil H. Ando Tokyo Astronomical Observatory, University of Tokyo, Mitaka, Tokyo 181, Japan Received December 4, 1985; accepted February 6, 1986 Measure Mentalities do Measure Alace INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT CONSTERVAL TOOULAR TELEPRARENTNISAL COMENT OF T. M. ROGERS¹, D. N. C. LIN^{2,3,4}, J. N. MCELWAINE^{5,6}, AND H. H. B. LAU ² Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; lin@ucolick.or ve-radiative-boundary 0 convec ³ Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China ⁴ Institute for Advanced Studies, Tsinghua University, Beijing, China Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA: ⁵ Swiss Federal Institute for Snow and Avalanche Research, 11 Fluelastrasse, Davos Dorf, Switzerland; ² Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; lin@ucolick.org ⁶ Planetary Science Institute, Tucson, AZ 85721, USA ³ Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China ⁷ Argelander-Institut for Astronomic, Universit Bonn Auf dem Huegel /1, D-55121 Bonn, Octmany, Horace astro-7500⁸ Monash Centration Opphysics, Scho**6500** matical Scienc**6000** University, A**5500** ⁴ Argelander-Institut for Astronomie Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; hblau@astro.uni-bonn.de 5000 ⁵ Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Australia Received 2013 February 19; accepted 2013 May 28; published 2013 July 2

 T_{eff} (K)

Received 2012 August 3; accepted 2012 September 4; published 2012 September 19

Eddington-Sweet circulation

- Rotation causes temperature differential between pole and equator - causes meridional circulation
- Timescale inversely proportional to rotation - > fast rotation -> shorter timescales -> more efficient mixing

$$au_{ES\odot} pprox 10^{12}$$
 No $au_{ESB} pprox 10^8$ Prob

Not Important

Probably Important

Chemical Mixing: Nitrogen Abundances

Brott et al. 2011

- Nitrogen is produced in the core of massive stars via burning: a surface enhancement of Ni would imply mixing through the (large) radiative envelope
- Mixing in massive stars (mostly radiative) is generally thought to be dominated by rotational mixing (Eddington-Sweet circulation)
- If this is the case one would expect strong Nitrogen enhancement at the surface of rapid rotators and no enhancement at surface of slow rotators
- This is generally seen but there are a lot of outliers : fast rotators with no enhancement + slow rotators which are enhanced

Number of simulated stars per bin

aster → star seismos → oscillation logos → discourse

The analysis of stellar oscillations enables the study of the stellar interior because different modes penetrate to different depths inside the star

- Oscillations = solutions of perturbed
 SSE in terms of periodic eigenfunctions
- Each oscillation mode described as spherical harmonic & frequency:

$$\begin{split} &\sqrt{4\pi} \Re\left\{ \left[\tilde{\xi}_r(r) Y_l^m(\theta, \phi) \boldsymbol{a}_r \right. \\ &\left. + \tilde{\xi}_{\rm h}(r) \left(\frac{\partial Y_l^m}{\partial \theta} \boldsymbol{a}_{\theta} + \frac{1}{\sin \theta} \frac{\partial Y_l^m}{\partial \phi} \boldsymbol{a}_{\phi} \right) \right] \exp(-\mathrm{i}\omega t) \right\} \end{split}$$

- Dominance of restoring force?
 - 1. pressure (acoustic waves)
 - 2. buoyancy (gravity waves)
 - 3. Coriolis (inertial waves)
 - 4. Lorentz (Alfvén waves)
 - 5. tidal (tidal waves)

Gravity waves propagating in radiative zone of a massive star, from surface to core

 $\xi(r,\theta,\phi,t) = \left[(\xi_{r,nl}e_r + \xi_{h,nl}\nabla_h) Y_l^m(\theta,\phi) \right] \exp(-i\omega t)$

Inferences of properties of stellar interiors via modes

a) requires frequencies & identification of (I,m) of as many modes as possible from data (+ n from models)

b) can only probe regions where modes propagate

Wave Equation

$$\frac{d^{2}\xi_{r}}{dr^{2}} = \frac{\omega^{2}}{c^{2}} \left(1 - \frac{N^{2}}{\omega^{2}}\right) \left(\frac{S_{l}^{2}}{\omega^{2}} - 1\right) \xi_{r}$$

$$S_{l} = \text{Lamb Frequency}$$

$$N = \text{Brunt Vaisala Frequency}$$

$$c = \text{Sound Speed}$$

$$\omega = \text{Wave Frequency}$$

$$|\omega| > |N| \text{ and } |\omega| > |S_{l}| \text{ p-modes}$$
or
$$|\omega| < |N| \text{ and } |\omega| < |S_{l}| \text{ g-modes}$$
Otherwise wayse are evenessed

Otherwise waves are evanescent

Propagation Cavity in the Sun

All helioseismology is done with p-modes

Probing power in F stars (H burning in core)

Probing power on Red Giant Branch (H exhausted in core, burning in shell)

Main Sequence (H burning in core)

p- and g-modes probe different regions throughout evolution

> Figure courtesy of Cole Johnston used in Aerts et al. (2019) ARAA, in press

Probing power on Red Clump (He burning in core)

Probing power of p- and g-modes

Schmid & Aerts (2016)

Starquakes and Asteroseismology

Rotation (and differential rotation) across the HR diagram

Evolution of stellar rotation

Post Main Sequence Evolution (happens for both low and high mass stars)

Summary of Observations

- Observations of surface abundances indicates unknown mixing in a variety of stars (low and high mass)
- Helioseismology indicates coupling between convective and radiative regions in Sun and an efficient AM transporter in radiative region to cause uniform rotation
- Asteroseismology indicates efficient AM transporter between convective and radiative regions across all ages and masses, though possibly more efficient in intermediate/high mass stars
- All of this indicates we need better descriptions of (magneto-)hydrodynamic processes in stellar interiors

Solar Neutrinos

RADIATIVE AND OTHER EFFECTS FROM INTERNAL WAVES Ramón J. García López IN SOLAR AND STELLAR INTERIORS¹ WILLIAM H. PRESS AND HENDRIK C. SPRUIT Harvard-Smithsonian Center for Astrophysics; and Department of Physics, Harvard University Received 1980 March 31; accepted 1980 October 16 Received 1990 May 7; accepted 1991 February 1 Mixing by internal waves **Orbits of Binary Stars** I. Lithium depletion in the Sun The Dynamical Tide in Close Binaries J. Montalbán J.-P. Zahn DASGAL, Observatoire de Paris-Meudon, F-92195 Meudon, France Observatoire de Nice, and Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder MESIOA::MONTALBAN (SPAN) Received February 24, 1975 Received April 5, accepted July 8, 1993 TIDAL FRICTION IN EARLY-TYPE STARS PETER GOLDREICH California Institute of Technology AND PHILIP D. NICHOLSON Cornell University Received 1988 September 8: accepted 1988 December 29 Macroturbulence in the solar interior On the origin of nucroturbulence in hot stars Jean-Paul Zahn¹, Suzanne Talon¹, and José Matias^{1,2} C. Acris¹⁷, J. Publi, M. Goda J. N. A. Duwill Centro de Astrofísica, Universidade do Porto, Rua do Campo Alegre 823, 415 Porto, Portugal (zahn@obspm.fr, talon@obspm.fr, Jose.Matias@mail.telepac.pt) Institute voor Nemerkande, Calentyner van 2000, 643000 Decter, de gam of Arthophysics, IVARS, Indocus, University Represent, PO No. 2001; 6001:11. A grouper the NATIONAL STREET Universitatio Stanks to, Schurenktava 1, L-SLVA, Manchor, Gonnary natitut d'Asseptysique v. Solophysique, Université de Liège a écolu 56 Avat 17, 5-4900 Liège Belgium Observatoire de Paris (LESIA) é place Jules January, 9026 y Mexilen Frincipal Course France

OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

C. Aerts^{1,2} and T. M. Rogers^{3,4} ¹ Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium ² Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands ³ Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, UK ⁴ Planetary Science Institute, Tucson, AZ 85721, USA Received 2015 April 30; accepted 2015 May 23; published 2015 June 19

Obliquities of Hot Jupiters

INTERNAL GRAVITY WAVES MODULATE THE APPARENT MISALIGNMENT OF **EXOPLANETS AROUND HOT STARS**

T. M. ROGERS¹, D. N. C. LIN^{2,3}, AND H. H. B. LAU^{4,5}

¹ Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; tami@lpl.arizona.edu ² Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; lin@ucolick.org ³ Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China ⁴ Argelander-Institut for Astronomie Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; hblau@astro.uni-bonn.de ⁵ Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Australia Received 2012 August 3; accepted 2012 September 4; published 2012 September 19

Mixing in Stars

Li DEPLETION IN F STARS BY INTERNAL GRAVITY WAVES

Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-8046 Garching bei München, Federal Republic of Germany

Differential Rotation

ON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

T. M. ROGERS Department of Mathematics and Statistics, Newcastle University, UK Planetary Science Institute, Tucson, AZ 85721, USA Received 2015 September 28; accepted 2015 November 10; published 2015 December 18

Uniform Rotation of Solar Interior

Angular momentum transport by internal waves

Département d'Astrophysique Stellaire et Galactique, Observatoire de Paris, Section de Meudon, F-92195 Meudon, France

ANGULAR MOMENTUM REDISTRIBUTION BY WAVES IN THE SUN PAWAN KUMAR,^{1,2} SUZANNE TALON,^{3,4} AND JEAN-PAUL ZAHN⁵ Received 1998 June 23; accepted 1999 March 5

Wave-rotation interaction and episodic mass-loss in Be stars

H. Ando

Tokyo Astronomical Observatory, University of Tokyo, Mitaka, Tokyo 181, Japan

Received December 4, 1985; accepted February 6, 1986

INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

T. M. ROGERS¹, D. N. C. LIN^{2,3,4}, J. N. MCELWAINE^{5,6}, AND H. H. B. LAU^{7,8} ¹ Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; tami@lpl.arizona.edu

² Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; lin@ucolick.org ³ Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China

⁴ Institute for Advanced Studies, Tsinghua University, Beijing, China

⁵ Swiss Federal Institute for Snow and Avalanche Research, 11 Fluelastrasse, Davos Dorf, Switzerland; james.mcelwaine@slf.ch ⁶ Planetary Science Institute, Tucson, AZ 85721, USA

⁷ Argelander-Institut for Astronomie, Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; hblau@astro.uni-bonn.de ⁸ Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Australia Received 2013 February 19; accepted 2013 May 28; published 2013 July 2