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Aims and objectives
• Major processes in large-scale atmosphere and ocean 

circulations on Earth and other planets

• Energetically dominant eddy-generating processes in rotating, 
stably-stratified flows

• Basic theory is well documented – e.g. see books by Geoff 
Vallis (2017 and 2019 - CUP) 

• Theoretical treatment here will follow Vallis, focusing on basic 
principles (not too many details!)

• Illustrate basic ideas on stability conditions and nonlinear 
equilibration using laboratory experiments and simple GCM 
simulations

• Applications to atmospheres of Earth, Mars and gas giant 
planets (Jupiter and Saturn)
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QG instabilities (baroclinic and/or barotropic)

• QG potential vorticity equation [cf lectures by Jerome Noir & Keith 
Julien] 𝜕𝑞

𝜕𝑡 + 𝒖& . ∇𝑞 = 0; 0 < 𝑧 < 𝐻
• where 𝑞 = ∇/𝜓 + 𝛽𝑦 + 3

34 𝐹 36
34 ; 𝐹 = 789

:9 ;
and 𝑓 = 𝑓< + 𝛽𝑦 where 𝑓< = 2Ω sin𝜑<

• With boundary conditions  𝑤 = 0 at 𝑧 = 0,𝐻
• i.e. 

3E
3F + 𝒖& . ∇𝑏 = 0 at 𝑧 = 0,𝐻 where 𝑏 = 𝑓< 3634

(1)

(2)

}
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QG instabilities (baroclinic and/or barotropic)

• Consider basic state 𝒖& = 𝑈 𝑦, 𝑧 , 0
for which 𝑞 = 𝑄 = 𝛽𝑦 − 3K

3L +
3
34 𝐹 3M

34 and 𝑈 = − 3M
3L

• Linearise (1) about U to get perturbation PV equation
3NO
3F + 𝑈

3NO
3P + 𝑣′

3S
3L = 0;  0 < 𝑧 < 𝐻

• with boundary conditions𝜕𝑏′
𝜕𝑡 + 𝑈

𝜕𝑏O
𝜕𝑥 + 𝑣O

𝜕𝐵
𝜕𝑦 = 0; 𝑧 = 0, 𝐻

• Where buoyancy  𝑏O = 𝑓< 36V34 ,
3W
3L = −𝑓< 3K34

(3)}
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QG instabilities (baroclinic and/or barotropic)

• Now seek solutions of the form 
𝜓O = 𝑅𝑒[ [𝜓 𝑦, 𝑧 𝑒\] P^_F ]

So a𝑞 = 39b6
3L9 +

3
34 𝐹 3b6

34 − 𝑘/ [𝜓
• Substitute into (3) to obtain

𝑈 − 𝑐 𝜕/ [𝜓
𝜕𝑦/ +

𝜕
𝜕𝑧 𝐹 𝜕 [𝜓𝜕𝑧 − 𝑘/ [𝜓 + 𝜕𝑄𝜕𝑦 [𝜓 = 0; 0 < 𝑧 < 𝐻

𝑈 − 𝑐 𝜕 [𝜓
𝜕𝑧 −

𝜕𝑈
𝜕𝑧 [𝜓 = 0; 𝑧 = 0, 𝐻

• Instability requires 𝑰𝒎[𝒄] ≠ 𝟎

(4)}
11/07/2019 WITGAF 2019 5



QG instabilities (baroclinic and/or barotropic)

• x(4) by [𝜓∗ and integrate (by parts) over domain 𝑦k < 𝑦 < 𝑦/; 0 < 𝑧 < 𝐻 (with suitable 
boundary conditions at 𝑦k and 𝑦/)

• So

l
<

m
l
Ln

L9 𝜕 [𝜓
𝜕𝑦

/
+ 𝐹 𝜕 [𝜓

𝜕𝑧
/
+ 𝑘/ [𝜓 / 𝑑𝑦𝑑𝑧 −l

Ln

L9 l
<

m 𝜕𝑄/𝜕𝑦
𝑈 − 𝑐 [𝜓 /𝑑𝑧 + 𝐹𝜕𝑈/𝜕𝑧

𝑈 − 𝑐 [𝜓 /
<

m
𝑑𝑦 = 0

• Note that first group of terms is real and positive but second group may be complex 
with imaginary part that satisfies

−𝑐\lLn
L9 l

<

m 𝜕𝑄/𝜕𝑦
𝑈 − 𝑐 / [𝜓 /𝑑𝑧 + 𝐹𝜕𝑈/𝜕𝑧

𝑈 − 𝑐 / [𝜓 /
<

m
𝑑𝑦 = 0 (5)
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QG instabilities
• Thus, for 𝑐\ ≠ 0 we require one of the following:

i. 𝜕𝑄/𝜕𝑦 changes sign in the interior domain – OR

ii. Interior 𝜕𝑄/𝜕𝑦 has the opposite sign to 𝜕𝑈/𝜕𝑧 at 𝑧 = 𝐻 – OR

iii. Interior 𝜕𝑄/𝜕𝑦 has the same sign as 𝜕𝑈/𝜕𝑧 at 𝑧 = 0 – OR if

iv. 3S
3L = 0 in the interior, 𝜕𝑈/𝜕𝑧 has the same sign at 𝑧 = 0 AND 𝑧 = 𝐻

• The Charney-Stern-Pedlosky generalization of the Rayleigh-Kuo stability 
criterion [NB necessary but not sufficient]

• Example: Earth’s mid-latitude troposphere
• 𝜕𝑄/𝜕𝑦 dominated by 𝛽 > 0 in the free atmosphere and 𝜕𝑈/𝜕𝑧 > 0 almost 

everywhere
• Instability typically satisfied by criterion iii.

−𝑐\lLn
L9 l

<

m 𝜕𝑄/𝜕𝑦
𝑈 − 𝑐 / [𝜓 /𝑑𝑧 + 𝐹𝜕𝑈/𝜕𝑧

𝑈 − 𝑐 / [𝜓 /
<

m
𝑑𝑦 = 0
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Barotropic instability

• Consider a basic state flow for which 𝑈 = 𝑈(𝑦) only

• Now 
3S
3L = 𝛽 − 39K

3L9 and (5) becomes

𝑐\lLn
L9 𝛽 − 𝜕/𝑈/𝜕𝑦/

𝑈 − 𝑐 / [𝜓 /𝑑𝑦 = 0
• A necessary condition for instability (𝑐\ ≠ 0) is therefore that 

𝛽 − 𝜕/𝑈/𝜕𝑦/ change sign somewhere in the domain (criterion i.)
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Example: barotropic edge waves

• Edge waves propagate on PV gradient at y = ±a

• Dispersion relations. 𝑐uv = 𝑈< −
w8
x
/] ; 𝑐^v = −𝑈< +

w8
x
/]

• For both waves to interact, phase speeds must be equal ⟹ 𝑐 = 0, 𝑘 = 1/2𝑎

Figures from Vallis (2017)
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Example: barotropic edge waves

Vorticity pattern during development of Total (upper) and perturbation (lower) 

barotropic instability streamfunction
• Varicose instability •  Note how perturbation leans into the shear

to extract EKE from the background flow

Figures from Vallis (2017)
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Example: barotropic edge waves

Total (upper) and perturbation (lower) 

streamfunction
•  Note how perturbation leans into the shear

to extract EKE from the background flow

Figure from Vallis (2017)
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Conversion route for barotropic instability

Lorenz energy cycle
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Barotropic jet experiment

• Experiment to drive a barotropically

unstable jet in a rotating fluid

• Cylindrical tank filled with 

homogeneous fluid (water)

• Differentially rotating ring (or disk) 

creates a jet (or shear layer) of width ~ 

E1/4

• Topographic 

b-plane
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CIRCULATION REGIMES

Barotropic jet experiment

Q

1311/07/2019 WITGAF 2019

Regime Diagram



Classical example of linearized baroclinic 
instability: the Eady problem (1949)

• Highly simplified “minimal” model
I. Motion is on an f-plane 𝛽 = 0
II. Uniformly stratified (𝑁/ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
III. Basic state has uniform vertical shear and no lateral shear: 𝑈 𝑧 = Λ𝑧 = 𝑈𝑧/𝐻
IV. Flow contained between two rigid, flat, horizontal boundaries at 𝑧 = 0,𝐻

•
3S
3L = 0 in interior so potential for instability only via criterion iv.

• Trial separable solution 𝜓O = 𝑅𝑒 Φ 𝑧 sin 𝑙𝑦 𝑒\] P^_F ; 𝑙 = 𝑛𝜋/𝐿
• Unstable for 𝜇 = 𝐿� 𝑘/ + 𝑙/ k// < 𝜇_ ≈ 2.399…

• where 𝐿� = 𝑁𝐻/𝑓< - Rossby radius of deformation

• Wavelength of maximum growth 𝜆� ≈ 3.9𝐿�
• Maximum growth rate 𝜎�vP = 𝑘𝑐\ �vP ≈ <.�kK

�� = <.�k�78
: ≈ 78

�\
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Eady model of baroclinic instability

Wave structures (from Vallis 2017)

Growth rate/phase speed + wave structures (Vallis 2017)
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Physics & energetics of baroclinic instability

AZ KZ

AE KE
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Lorenz energy cycle

Conversion route for baroclinic instability
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The baroclinic rotating annulus experiment•Baroclinic instability in the laboratory: 
the rotating annulus experiment

• Baroclinic instability

- a potential energy 

releasing instability in 
the atmosphere and 

oceans
1711/07/2019

WITGAF 2019



CIRCULATION REGIMES

The rotating annulus experiment

Θ =
gαΔTd

Ω
2
L

Ta =
4Ω

2
L
5

ν 2d

1811/07/2019 WITGAF 2019

Flow patterns [Pfeffer et al. - FSU]



Nonlinear equilibration

• What happens as instability grows 
to finite amplitude? 

• It modifies its basic state to reduce 
instability

• Reduce isotherm slope (releases APE)
• Mix PV to reduce ∂Q/∂y
• Sharpen or reduce zonal jets?

• If tAdv = L/U << tForcing, growing 
perturbations may hold basic state 
close to marginal instability

• Baroclinic adjustment?
• Heat transport by 3D flow 

~independent of Ω in weakly 
supercritical flows….

Heat transport (Read 2003 JFM)

Axisymmetric heat transport

(numerical simulation with 

eddies suppressed)
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Circulation regimes in simple global 
atmospheric models
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Neptune

Wang+ (2018 QJRMS)

• Simplified atmospheric 

numerical circulation 

model (Univ. Hamburg 

PUMA) of Earth-like 

planetary atmosphere

• Relaxation towards 

prescribed 

temperature T(f,z)

• Simple linear surface 

friction

• No topography, 

moisture or oceans

• Vary planetary rotation 

rate (and other 

parameters)

Shading is u at 200 hPa



Planetary parameters

W/W* Q=RoT NJ 4W4tR
4

1/16 20 0.04 1.7x105

1/8 5 0.07 2.7x106

1/4 1.3 0.14 4.4x107

1/2 0.32 0.28 6.8x108

1 0.08 1.57 1.1x1010

2 0.02 3.1 1.8x1011

4 0.005 6.3 2.9x1012

8 0.001 14.5 4.6x1013

Cf

Titan

Mars[?]

Earth

Uranus &

Neptune?

Saturn & 

Jupiter 2111/07/2019 WITGAF 2019



Heat transport & baroclinic adjustment?

• Vary Ω/Ωearth = Ω* from 1/128 – 8

• Peak total meridional heat flux 
~independent of Ω* for Ω* < 1

• Growth in eddy heat transport 
compensates for decrease in zonally 
symmetric transport with Ω

• Eddy heat transport ∝ Ω∗ for Ω* < ½ 
(RoT > 0.1)

• A form of baroclinic adjustment?

• NB eddies always present…?
• Unlike in the lab….?

• Baroclinic or barotropic?
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Eddies in global circulation: baroclinic or 
barotropic?

• NB eddies always present…?

• Baroclinic or barotropic?

• Eddies are mainly barotropic in 
character for RoT >> 1 (CK > CE > 0)

• Eddies are mainly baroclinic in 
character for RoT << 1 (CK < 0 and 
|CK| < CE)

AZ KZ

AE KE

CZ

CE

CA CK

GZ

GE

FZ

FE
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Baroclinic instabilities in Earth’s atmosphere?
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• For Earth’s troposphere, U ~ 10 m s-1, 

H ~ 10 km, N ~ 10-2 s-1, f0 ~ 10-4 s-1

• Hence, Ld ~ 1000 km

• lmax ~ 3.9 Ld ~ 4000 km

• smax ~ 0.31 Lf0/N ~ 0.5 day-1



Baroclinic instability in the Martian atmosphere:
Barnes (1984) J. Atmos. Sci., 41, 1536-1550

• Zonal wind U ∂Q/∂y

• Realistic mid-latitude zonal jet
• Qy changes sign in latitude, and 

at the ground
• Instability criteria i. or iii.
• Baroclinic and/or barotropic 

instability?

• For Mars, N ~ 10-2 s-1, H ~ 10 km, 

f0 ~ 10-4 s-1 and DU ~ 50 m s-1

• -> lmax ≈ 3.9:m78 ≈3900 km; 

• tmax~ 𝜎�vP^k = 3.2 :
78� ≈ 17 hours

11/07/2019 WITGAF 2019 25



‘Realistic’ baroclinic instability on Mars
[Tanaka & Arai (1999) Earth Plan. Space, 51, 225-232]

• Maximum growth around m = 2-3

• Low m growing waves are deep internal modes

• Higher m growing waves are shallow external modes
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Baroclinic/barotropic instabilities on Mars

North circumpolar storms (visualized by dust storms!) Travelling cyclonic storms analysed for surface p

[Credit: NASA/JPL] [Lewis et al. 2007 Icarus]11/07/2019 WITGAF 2019 27



Baroclinic/barotropic instabilities on Mars

Baroclinic transient <T’2>1/2 vs season

• Lorenz energy budget (from observations –
Tabataba-Vakili et al. 2015) in J/W m-2

• Conversions dominated by baroclinic 
instability terms + barotropic instability –> a 
mixed case!
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Barotropic and baroclinic 

instabilities on Jupiter (and 

Saturn)?

• b - uyy < 0 in 
easterly jets

• Barotropically
unstable…?

Cassini ISS winds (Porco et al. 2003)
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Jupiter cloud motions
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• 2D KE spectrum

• Projected onto 

spherical harmonics 

of total order n



Jupiter: KE spectrum & spectral 
fluxes 
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Inverse

cascade

Forward cascade?

~njets ~nD?                                                          ~njets ~nD?

[Rotational flow: Boer & Shepherd 1987]

KE Enstrophy

Young & Read Nature Physics (2017)

NB Source of KE at length scales ~ Ld

• Baroclinic instability?



Baroclinic instability on 
Jupiter or Saturn?

• No solid surface, so C-S-P criterion 
iii. not valid!

• 𝜕𝑄/𝜕𝑦 ≠ 0 in free atmosphere 
[Read et al. 2006;2009]

• Strong tropopause (interface 
between convective troposphere 
and stable stratosphere around p ~ 
0.3 bar)

• ⟹ C-S-P criteria i. or ii. possible….
• E.g. ii. Satisfied in westward jets at 

tropopause [Conrath et al. 1991]

2 hPa

10 hPa

118 hPa

225 hPa

QGPV profiles on pressure levels
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Oxford/MIT-gpm (Young et al. 2019)

• Global atmospheric circulation model for Jupiter troposphere/stratosphere [~20bar –10mb]

• Based on MITgcm dynamical core
• 0.7o x 0.7o to 0.3o x 0.3o x 33 vertical levels
• Weak “MHD” drag at 

bottom

• 2-band “semi-gray” 

radiation scheme

• Interior heat flux (uniform 

w. latitude) = 5.7 W m-2

• Passive condensible clouds 

• Moist convection 

parameterization 
• Zuchowski et al. (2009)
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NH3

NH4SH

H2O

[Run on UK STFC DiRAC supercomputer]



Oxford-gpm: Velocity & temperature
r112ct1 zonal mean zonal velocity
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(b) Zonal velocity (B1).
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r112ct1 GCM temperature (K)
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(h) Temperature (B1).

• Meridional eddy heat flux 

convergence strongest near 

tropopause (~300-500 hPa)

• Internal/interfacial baroclinic 

instability?



Oxford-gpm (Jupiter): Energetics
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• Upscale turbulent cascades at large scales

• Spectral flux < 0

• DOWNscale at scales < LD…

• Spectral flux > 0

• Energised by PE->KE (baroclinic) conversion

• Baroclinic instability

Kinetic energy spectral flux

Potential!kinetic energy conversion
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Lorenz energy budget
• Energies in J m-2

• Conversions in W m-2



Saturn’s interior rotation rate - a mystery?

• Jupiter’s interior rotation rate 
determined to high precision by 
precession rate of magnetic field

• Saturn’s magnetic field dominated by 
a dipole aligned with its rotation axis 
(±0.06o)!

• Periodicity only in very low radio 
frequency emissions – locked to the 
interior…..?

• First measured by Voyager fly-by in 1982

• Monitored by Cassini orbiter from 2004-
2017 and found to vary in time!!

• Cf rotation period estimated from 
gravity field and oblateness (Anderson & 
Schubert 2007)?

From Ye et al. (2018) GRL
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Voyager System III



Coda: measuring Saturn’s interior rotation 
using hydrodynamic stability!

• Stability argument based on pseudo-energy ℋ: stability implied if ℋ
is negative-definite.

• Leads to sufficient condition for stability (Arnol’d 1966 – known as “Arnol’d II”)

− �M
�S = − �M/�L

�S/�L =
K^�
��
��

≥ 𝐿�/
• where a is a constant

• At marginal stability, ≥→= and a defines unique reference frame 
where the gravest edge waves (largest Ld) can just phase-lock….

• Does barotropic adjustment apply to Jupiter and Saturn….? 
• [Dowling 1993 J. Atmos. Sci.]
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Coda: measuring Saturn’s interior rotation 
using hydrodynamic stability!
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Saturn Jupiter

• Correlate Q vs Y and Ld in latitude bands to determine 

a(f) and corresponding Ω(f)

• Result: a unique Ω for each planet (to within statistical 

errors)!  [Read et al. 2009 Nature]

Voyager
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Saturn’s interior rotation rate - a mystery?
• Saturn’s magnetic field dominated by a 

dipole aligned with its rotation axis 
(±0.06o)!

• Periodicity only in very low radio frequency 
emissions – locked to the interior…..?

• First measured by Voyager fly-by in 1982

• Monitored by Cassini orbiter from 2004-
2017 and found to vary in time!!

• Cf rotation period estimated from gravity 
field and oblateness (Anderson & Schubert 
2007)?

• Hydrodynamic marginal stability value 
(Read et al. 2009)

• agrees with Anderson & Schubert (2007)

• Recent confirmation from Cassini “ring 
seismology” (Mankovitch et al. 2019)

From Ye et al. (2018) GRL
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Voyager System III



Conclusions
• Common stability criteria (necessary but not sufficient) for baroclinic and 

barotropic instabilities

• Rapid rotator planets dominated by waves energized by baroclinic 
instabilities on scales ~ Ld

• Slow rotator planets dominated by waves energized by barotropic 
instabilities 

• Baroclinic/barotropic adjustment may act as self-organized criticality in 
some circumstances [not too super-critical]

• Regulates total equator-pole heat transport [eddy/mean-flow compensation]
• Controls structure and strength of eddy-driven zonal jets?
• Earth is close to margins of applicability…..?

• Roles of instabilities in deep gas giant atmospheres….?
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