

Large-scale baroclinic and barotropic instabilities in planetary atmospheres

> Peter Read University of Oxford, UK

Aims and objectives

- Major processes in large-scale atmosphere and ocean circulations on Earth and other planets
 - Energetically dominant eddy-generating processes in rotating, stably-stratified flows
- Basic theory is well documented e.g. see books by Geoff Vallis (2017 and 2019 CUP)
 - Theoretical treatment here will follow Vallis, focusing on basic principles (not too many details!)
 - Illustrate basic ideas on stability conditions and nonlinear equilibration using laboratory experiments and simple GCM simulations
 - Applications to atmospheres of Earth, Mars and gas giant planets (Jupiter and Saturn)

• QG potential vorticity equation [cf lectures by Jerome Noir & Keith Julien]

$$\frac{\partial q}{\partial t} + \boldsymbol{u}_g. \nabla q = 0; \quad 0 < z < H$$
• where $q = \nabla^2 \psi + \beta y + \frac{\partial}{\partial z} \left(F \frac{\partial \psi}{\partial z} \right); \quad F = \frac{f_0^2}{N^2};$
and $f = f_0 + \beta y$ where $f_0 = 2\Omega \sin \varphi_0$

• With boundary conditions w = 0 at z = 0, H

• i.e.
$$\frac{\partial b}{\partial t} + u_g$$
. $\nabla b = 0$ at $z = 0, H$ where $b = f_0 \frac{\partial \psi}{\partial z}$ (2)

- Consider basic state $u_g = (U(y, z), 0)$ for which $q = Q = \beta y - \frac{\partial U}{\partial y} + \frac{\partial}{\partial z} \left(F \frac{\partial \Psi}{\partial z} \right)$ and $U = -\frac{\partial \Psi}{\partial y}$
- Linearise (1) about U to get perturbation PV equation

$$\frac{\partial q'}{\partial t} + U \frac{\partial q'}{\partial x} + v' \frac{\partial Q}{\partial y} = 0; \ 0 < z < H$$

• with boundary conditions

$$\frac{\partial b'}{\partial t} + U \frac{\partial b'}{\partial x} + v' \frac{\partial B}{\partial y} = 0; \ z = 0, H$$

re buoyancy $b' = f_0 \frac{\partial \psi'}{\partial z}, \frac{\partial B}{\partial y} = -f_0 \frac{\partial U}{\partial z}$

• Whe

(3)

• Now seek solutions of the form $\psi' = Re[\tilde{\psi}(y,z)e^{ik(x-ct)}]$

So
$$\tilde{q} = \frac{\partial^2 \tilde{\psi}}{\partial y^2} + \frac{\partial}{\partial z} \left(F \frac{\partial \tilde{\psi}}{\partial z} \right) - k^2 \tilde{\psi}$$

• Substitute into (3) to obtain

$$(U-c)\left(\frac{\partial^2 \tilde{\psi}}{\partial y^2} + \frac{\partial}{\partial z}\left(F\frac{\partial \tilde{\psi}}{\partial z}\right) - k^2 \tilde{\psi}\right) + \frac{\partial Q}{\partial y}\tilde{\psi} = 0; \quad 0 < z < H$$
$$(U-c)\frac{\partial \tilde{\psi}}{\partial z} - \frac{\partial U}{\partial z}\tilde{\psi} = 0; \quad z = 0, H$$

• Instability requires $Im[c] \neq 0$

(4)

- x(4) by $\tilde{\psi}^*$ and integrate (by parts) over domain $y_1 < y < y_2$; 0 < z < H (with suitable boundary conditions at y_1 and y_2)
- So $\int_{0}^{H} \int_{y_{1}}^{y_{2}} \left[\left| \frac{\partial \tilde{\psi}}{\partial y} \right|^{2} + F \left| \frac{\partial \tilde{\psi}}{\partial z} \right|^{2} + k^{2} \left| \tilde{\psi} \right|^{2} \right] dy dz - \int_{y_{1}}^{y_{2}} \left\{ \int_{0}^{H} \frac{\partial Q}{\partial y} \left| \tilde{\psi} \right|^{2} dz + \left[\frac{F \partial U}{\partial z} \left| \tilde{\psi} \right|^{2} \right]_{0}^{H} \right\} dy = 0$
- Note that first group of terms is real and positive but second group may be complex with imaginary part that satisfies

$$-c_i \int_{y_1}^{y_2} \left\{ \int_0^H \frac{\partial Q/\partial y}{|U-c|^2} \left| \tilde{\psi} \right|^2 dz + \left[\frac{F \partial U/\partial z}{|U-c|^2} \left| \tilde{\psi} \right|^2 \right]_0^H \right\} dy = 0$$
(5)

QG instabilities

$$-c_i \int_{y_1}^{y_2} \left\{ \int_0^H \frac{\partial Q/\partial y}{|U-c|^2} \left| \tilde{\psi} \right|^2 dz + \left[\frac{F \partial U/\partial z}{|U-c|^2} \left| \tilde{\psi} \right|^2 \right]_0^H \right\} dy = 0$$

• Thus, for $c_i \neq 0$ we require one of the following:

- *i.* $\partial Q/\partial y$ changes sign in the interior domain OR ii. Interior $\partial Q/\partial y$ has the opposite sign to $\partial U/\partial z$ at z = H - ORiii. Interior $\partial Q/\partial y$ has the same sign as $\partial U/\partial z$ at z = 0 - OR if *iv.* $\frac{\partial Q}{\partial y} = 0$ in the interior, $\partial U/\partial z$ has the same sign at z = 0 AND z = H
- The Charney-Stern-Pedlosky generalization of the Rayleigh-Kuo stability criterion [NB necessary but not sufficient]
- Example: Earth's mid-latitude troposphere
 - $\partial Q/\partial y$ dominated by $\beta > 0$ in the free atmosphere and $\partial U/\partial z > 0$ almost everywhere
 - Instability typically satisfied by criterion *iii*.

Barotropic instability

• Consider a basic state flow for which U = U(y) only

• Now
$$\frac{\partial Q}{\partial y} = \beta - \frac{\partial^2 U}{\partial y^2}$$
 and (5) becomes
 $c_i \int_{y_1}^{y_2} \frac{\beta - \partial^2 U/\partial y^2}{|U - c|^2} |\tilde{\psi}|^2 dy = 0$

• A necessary condition for instability ($c_i \neq 0$) is therefore that $\beta - \partial^2 U / \partial y^2$ change sign somewhere in the domain (criterion *i*.)

Example: barotropic edge waves

- Dispersion relations. $c_{+a} = U_0 \frac{\frac{U_0}{a}}{2k}; c_{-a} = -U_0 + \frac{\frac{U_0}{a}}{2k}$
- For both waves to interact, phase speeds must be equal $\Rightarrow c = 0, k = 1/2a$

Example: barotropic edge waves

Figures from Vallis (2017)

Fig. 9.6

Vorticity pattern during development of barotropic instability

• Varicose instability

11/07/2019

9.7

Total (upper) and perturbation (lower) streamfunction

- Note how perturbation leans into the shear
- to extract EKE from the background flow₁₀

WITGAF 2019

Example: barotropic edge waves

Lorenz energy cycle

Figure from Vallis (2017)

Conversion route for barotropic instability

Fig. 9.7 Total (upper) and perturbation (lower) streamfunction

• Note how perturbation leans into the shear to extract EKE from the background flow

Barotropic jet experiment

- Experiment to drive a barotropically unstable jet in a rotating fluid
- Cylindrical tank filled with homogeneous fluid (water)
- Differentially rotating ring (or disk) creates a jet (or shear laver) of width ~ F^{1/4}

111

Topographic
 β-plane

Classical example of linearized baroclinic instability: the Eady problem (1949)

- Highly simplified "minimal" model
 - I. Motion is on an f-plane ($\beta = 0$)
 - II. Uniformly stratified ($N^2 = constant$)
 - III. Basic state has uniform vertical shear and no lateral shear: $U(z) = \Lambda z = Uz/H$
 - IV. Flow contained between two rigid, flat, horizontal boundaries at z = 0, H
- $\frac{\partial Q}{\partial y} = 0$ in interior so potential for instability only via criterion *iv*.
- Trial separable solution $\psi' = Re[\Phi(z) \sin ly e^{ik(x-ct)}]; l = n\pi/L$
- Unstable for $\mu = L_d [k^2 + l^2]^{1/2} < \mu_c \approx 2.399 \dots$
 - where $L_d = NH/f_0$ Rossby radius of deformation
 - Wavelength of maximum growth $\lambda_m \approx 3.9L_d$
 - Maximum growth rate $\sigma_{max} = [kc_i]_{max} \approx \frac{0.31U}{L_d} = \frac{0.31\Lambda f_0}{N} \approx \frac{f_0}{\sqrt{Ri}}$

Eady model of baroclinic instability

Physics & energetics of baroclinic instability

Baroclinic instability in the laboratory: the rotating annulus experiment

• Baroclinic instability

- a potential energy releasing instability in the atmosphere and oceans

17

CIRCULATION REGIMES

The rotating annulus experiment

Flow patterns [Pfeffer et al. - FSU]

18

Nonlinear equilibration

Heat transport (Read 2003 JFM)

10 . 87651 5 878573 8765 • What happens as instability grows to finite amplitude? 10 • It modifies its basic state to reduce instability 81 Reduce isotherm slope (releases APE) • Mix PV to reduce $\partial Q/\partial y$ • Sharpen or reduce zonal jets? ₹ m=2 m=3 • If $\tau_{Adv} = L/U \ll \tau_{Forcing}$, growing perturbations may hold basic state close to marginal instability m=4 Ax Axisymmetric heat transport (numerical simulation with Baroclinic adjustment? eddies suppressed) Heat transport by 3D flow
 ~independent of Ω in weakly supercritical flows.... Ω (rad s⁻¹)

Circulation regimes in simple global atmospheric models wang+ (2018 QJRMS)

- Simplified atmospheric numerical circulation model (Univ. Hamburg PUMA) of Earth-like planetary atmosphere
- Relaxation towards prescribed temperature *T(φ,z)*
- Simple linear surface friction
- No topography, moisture or oceans
- Vary planetary rotation rate (and other parameters)

Shading is u at 200 hPa

Planetary parameters

				- Cf
Ω/Ω^*	Θ=Ro _T	NJ	$4\Omega^4 \tau_R^4$	
1/16	20	0.04	1.7x10 ⁵	- Titan
1/8	5	0.07	2.7x10 ⁶	
1/4	1.3	0.14	4.4x10 ⁷	Moro[2]
1/2	0.32	0.28	6.8x10 ⁸	
1	0.08	1.57	1.1x10 ¹⁰	Earth
2	0.02	3.1	1.8x10 ¹	Uranus & Neptune?
4	0.005	6.3	2.9x10 ¹²	
8	0.001	14.5 WITGAF 2019	4.6x10 ¹³	Saturn & Jupiter

Heat transport & baroclinic adjustment?

- Vary $\Omega/\Omega_{earth} = \Omega^*$ from 1/128 8
- Peak total meridional heat flux ~independent of Ω^* for $\Omega^* < 1$
 - Growth in eddy heat transport compensates for decrease in zonally symmetric transport with Ω
 - Eddy heat transport $\propto \Omega^*$ for $\Omega^* < \frac{1}{2}$ (Ro_T > 0.1)
 - A form of baroclinic adjustment?
- NB eddies always present...?
 - Unlike in the lab....?
 - Baroclinic or barotropic?

Eddies in global circulation: baroclinic or barotropic?

- NB eddies always present...?
 - Baroclinic or barotropic?
- Eddies are mainly barotropic in character for Ro_T >> 1 (CK > CE > 0)
- Eddies are mainly baroclinic in character for Ro_T << 1 (CK < 0 and |CK| < CE)

Baroclinic instabilities in Earth's atmosphere?

- For Earth's troposphere, U ~ 10 m s⁻¹, H ~ 10 km, N ~ 10⁻² s⁻¹, f_0 ~ 10⁻⁴ s⁻¹
- Hence, *L_d* ~ *1000 km*
- $\lambda_{\rm max} \sim 3.9 \ {\rm L_d} \sim 4000 \ {\rm km}$
- σ_{max} ~ 0.31 $\Lambda f_0/N$ ~ 0.5 day $^{-1}$

Baroclinic instability in the Martian atmosphere: Barnes (1984) J. Atmos. Sci., 41, 1536-1550

- Realistic mid-latitude zonal jet
- Q_v changes sign in latitude, and at the ground
 - Instability criteria i. or iii.
 - Baroclinic and/or barotropic • instability?
- For Mars, $N \sim 10^{-2} \text{ s}^{-1}$, $H \sim 10 \text{ km}$, $f_0 \sim 10^{-4} \, \text{s}^{-1}$ and $\Delta U \sim 50 \, \text{m s}^{-1}$
- -> $\lambda_{max} \approx 3.9 \frac{NH}{f_0} \approx 3900$ km; $\tau_{max} \sim \sigma_{max}^{-1} = 3.2 \frac{N}{f_0 \Lambda} \approx 17$ hours

'Realistic' baroclinic instability on Mars [Tanaka & Arai (1999) *Earth Plan. Space*, **51**, 225-232]

- Maximum growth around *m* = 2-3
- Low *m* growing waves are deep *internal modes*
- Higher *m* growing waves are shallow *external modes*

Baroclinic/barotropic instabilities on Mars

North circumpolar storms (visualized by dust storms!) [Credit:7/MASA/JPL] WITGAF 2019 Travelling cyclonic storms analysed for surface p [Lewis et al. 2007 *Icarus*] 27

Baroclinic/barotropic instabilities on Mars

- Lorenz energy budget (from observations Tabataba-Vakili et al. 2015) in J/W m⁻²
- Conversions dominated by baroclinic instability terms + barotropic instability -> a mixed case!

- $\beta u_{yy} < 0$ in easterly jets
- Barotropically unstable...?

Barotropic and baroclinic instabilities on Jupiter (and Saturn)?

11/07/2019

Jupiter cloud motions

- 2D KE spectrum
- Projected onto spherical harmonics of total order n

Jupiter: KE spectrum & spectralfluxesNB Source of KE at length scales ~ Ld

Young & Read Nature Physics (2017)

Baroclinic instability on Jupiter or Saturn?

- No solid surface, so C-S-P criterion iii. not valid!
- $\partial Q / \partial y \neq 0$ in free atmosphere [Read et al. 2006;2009]
- Strong tropopause (interface between convective troposphere and stable stratosphere around p ~ 118 0.3 bar)
- \Rightarrow C-S-P criteria i. or ii. possible....
 - E.g. ii. Satisfied in westward jets at tropopause [Conrath et al. 1991]

QGPV profiles on pressure levels

[Run on UK STFC DiRAC supercomputer]

Oxford/MIT-gpm (Young et al. 2019)

- Global atmospheric circulation model for Jupiter troposphere/stratosphere [~20bar –10mb]
- Based on MITgcm dynamical core
 - 0.7° x 0.7° to 0.3° x 0.3° x 33 vertical levels
 - Weak "MHD" drag at bottom
- 2-band "semi-gray" radiation scheme
- Interior heat flux (uniform w. latitude) = 5.7 W m⁻²
- Passive condensible clouds
- Moist convection parameterization
 - Zuchowski et al. (2009)

Oxford-gpm: Velocity & temperature

). (b) Meridional eddy heat flux convergence.

- Meridional eddy heat flux convergence strongest near tropopause (~300-500 hPa)
- Internal/interfacial baroclinic instability?

Oxford-gpm (Jupiter): Energetics

Lorenz energy budget

- Energies in J m⁻²
- Conversions in W m⁻²

Kinetic energy spectral flux Potential→kinetic energy conversion

- Upscale turbulent cascades at large scales
 - Spectral flux < 0
- DOWNscale at scales < *L*_D...
 - Spectral flux > 0
- Energised by PE->KE (baroclinic) conversion
 - Baroclinic instability

WITGAF 2019

35

Saturn's interior rotation rate - a mystery?

- Jupiter's interior rotation rate determined to high precision by precession rate of magnetic field
- Saturn's magnetic field dominated by a dipole aligned with its rotation axis (±0.06°)!
 - Periodicity only in very low radio frequency emissions – locked to the interior.....?
 - First measured by Voyager fly-by in 1982
 - Monitored by Cassini orbiter from 2004-2017 and found to vary in time!!
 - Cf rotation period estimated from gravity field and oblateness (Anderson & Schubert 2007)?

Coda: measuring Saturn's interior rotation using hydrodynamic stability!

- Stability argument based on pseudo-energy \mathcal{H} : stability implied if \mathcal{H} is negative-definite.
 - Leads to sufficient condition for stability (Arnol'd 1966 known as "Arnol'd II")

$$-\frac{d\Psi}{dQ} = -\frac{d\Psi/dy}{dQ/dy} = \frac{U-\alpha}{\frac{dQ}{dy}} \ge L_d^2$$

- where α is a constant
- At marginal stability, $\geq \rightarrow =$ and α defines unique reference frame where the gravest edge waves (largest L_d) can just phase-lock....
- Does barotropic adjustment apply to Jupiter and Saturn....?
 - [Dowling 1993 J. Atmos. Sci.]

Coda: measuring Saturn's interior rotation using hydrodynamic stability!

- Correlate Q vs Ψ and L_d in latitude bands to determine $\alpha(\phi)$ and corresponding $\Omega(\phi)$
- Result: a unique Ω for each planet (to within statistical errors)! [Read et al. 2009 Nature]

Saturn

Jupiter

Saturn's interior rotation rate - a mystery?

- Saturn's magnetic field dominated by a dipole aligned with its rotation axis (±0.06°)!
 - Periodicity only in very low radio frequency emissions – locked to the interior.....?
 - First measured by Voyager fly-by in 1982
 - Monitored by Cassini orbiter from 2004-2017 and found to vary in time!!
 - Cf rotation period estimated from gravity / field and oblateness (Anderson & Schubert 2007)?
- Hydrodynamic marginal stability value (Read et al. 2009)
 - agrees with Anderson & Schubert (2007)
- Recent confirmation from Cassini "ring seismology" (Mankovitch et al. 2019)

Conclusions

- Common stability criteria (necessary but not sufficient) for baroclinic and barotropic instabilities
- Rapid rotator planets dominated by waves energized by baroclinic instabilities on scales ~ L_d
- Slow rotator planets dominated by waves energized by barotropic instabilities
- Baroclinic/barotropic adjustment may act as self-organized criticality in some circumstances [not too super-critical]
 - Regulates total equator-pole heat transport [eddy/mean-flow compensation]
 - Controls structure and strength of eddy-driven zonal jets?
 - Earth is close to margins of applicability.....?
- Roles of instabilities in deep gas giant atmospheres....?