La science en cuisinant: L'art de la cuisson basse temperature...

The 4 ingredients that makes food:

- Fats
- Carbohydrates
- Proteins
- Water
- Vitamins and Minerals

FATS

Do not dissolve in water

CARBOHYDRATES

Sacarose: short chains

Maltose: short chains

Starch: long chains

PROTEINS

Proteins=chains of amino acids

20 different Amino Acids can be combined to form proteins.

Cooking

- Roasting
- Frying
- Steaming
- Smoking
- Baking
- Boiling
- Acidifying...

Preamble

Temperature: it represents the kinetic energy due to microscopic agitation.

$$E = k_B T$$

Heat: it represents the amount of energy you need to provide to a system to increase its temperature (the microscopic kinetic energy).

$$\Delta E = k_B \Delta T$$

Heating Power: How fast you can provide this energy to the system, i.e. how fast you can raise its temperature.

$$\mathcal{P} = \frac{\Delta E}{\Delta t} = k_B \frac{\Delta T}{\Delta t}$$

What is temperature ?

Temperature is a measure of the kinetic energy due to agitation of the molecules and atoms at the microscopic scale.

$E = k_B T$

 k_B is the Boltzmann constant.

What is temperature ? $E = k_B T$

Cooking=denaturation of the proteins

 $E = k_B T$

Cooking=denaturation of the proteins

As we heat food, the proteins will progressively unfold and coagulate, leading to various textures at very specific temperatures.

$$E = k_B T$$

Each protein has a different temperature of denaturation.

What is happening when you cook an egg?

Egg \approx 119 different proteins

At 57°C the egg is fully pasteurised but no denaturation has occurred yet.

 around 60°C the first proteins start to denature and cause the egg white to form a loose gel

Between 62°C and 63°C, 1°C difference

70°C

Heat transfer in food

Heat Versus Temperature

$T_1 \longrightarrow T_1 + \Delta T$

$$Q = mC_p \Delta T$$

The 'heating' will stop when T1=T2

Thermal capacity

 $Q = mC_p(T_2 - T1)$

Ingredient	Cp(J/gK)
water	4.18
Egg	3.18
Beef	2.5-3.2
Frogs Legs	3.68
Olive Oil	1.97

Air: 1(J/g K)

How is heat transferred ?

By conduction

Fig 6.2.3 Conduction—vibrations pass along from particle to particle away from the heat source.

 $k_{egg} \sim 0.005 \, W/cm/K$

Heat equation:

k=Thermal conductivity

Heat equation:

k=Thermal conductivity

The larger is the temperature gradient between the water and the yolk, the faster the heat is transported inside.

 $\frac{\Delta Q}{\Delta t} = k4\pi R\Delta T$

 $\Delta Q = mC_p \delta T$

The larger is the temperature gradient between the water and the yolk, the faster the temperature of the yolk increases .

Between 62°C and 63°C, 1°C difference

 $\overline{k_{egg}} \sim 0.005 \, W/cm/K$ $R \sim 2.5 \, cm$ $m \sim 50g$ $Cp \sim 3.18 J/gK$

$$T_w \sim 80^\circ C \to \Delta t \sim 40s$$

 $T_w \sim 64^\circ C \to \Delta t \sim 1000s$

17 days and 36 eggs later

How long does it takes to raise the temperature of the yolk from 62°C to 63°C?

 $T_w \sim 80^{\circ}C \to \Delta t \sim 40s$

 $T_w \sim 64^{\circ}C \rightarrow \Delta t \sim 1000s$

Boiling water cooking, the end of a myth...

How long does it takes to raise the temperature of the yolk from 62°C to 63°C?

 $\overline{T_w} \sim 80^{\circ}C \to \Delta t \sim 40s$ $\overline{T_w} \sim 64^{\circ}C \to \Delta t \sim 1000s$

Boiling an Egg: 4 min

 $T \sim 70^{\circ}C - 80^{\circ}C$

 $T \sim 65^{\circ}C$

After about 1min

Minimum: 34.3 °C Maximum: 67.0 °C Average: 54.4 °C

Boiling an Egg: 6 min

 $T \sim 80^{\circ}C$

 $T\sim 67^{\circ}C-70^{\circ}C$

Minimum: 56.0 °C Maximum: 66.1 °C Average: 61.7 °C

Boiling an Egg: 6 min + 4 min rest

What is going on ????

Up to now we said: if $k_BT > E$ denaturation occurs.

Actually, statistical physics tells that we should say: There is a probability that it occurs.

 $P \propto exp(-$

The higher the temperature, the higher is the probability you denatured the proteins.

The higher the temperature, the faster you denatured the proteins.

 $P \propto exp(\cdot)$

From statistical physics, there is a small but non zero probability to denature the proteins at a temperature less than the typical activation energy !!!!!! From statistical physics, there is a small but non zero probability to denature the proteins at a temperature less than the typical activation energy !!!!!!

high temperature cooking: impossible to control the denaturation precisely

Cooking just at the right temperature for long enough allows for consistant results with a specific texture.

Cooking for too long even at very low T will result in the denaturation of proteins you did not want to.

Cooking the perfect egg

Option 1

Option 2

Low Temperature (70°C) cooking allows for more control of the temperature.

 $\Delta T \sim 1^{\circ} C \longrightarrow \Delta t \sim 2 \min$

Low temperature vacuum cooking

Red wine beef short ribs with caramelised Savoy cabbage, glazed sweet carrots, parsnips & jus de Boeuf by <u>Tho</u>mas Keller at Bouchon, Yountville, California

The Effects of Heat on Meat Proteins, Color and Texture

Meat Temperature	Doneness	Meat Qualities	Fiber Weakening Enzymes	Fiber Proteins	Connective-Tissue Collagen	Protein-Bound Water	Myoglobin Pigment
100°F 40°C	Raw	-Soft to touch -Slick, smooth -Translucent, deep red	Active	Beginning to unfold	Intact	Begins to escape from proteins, accumulate within cells	Normal
110"F 45"C	Bleu						
120"F 50"C	Rare, 120-130°F	-Becoming firmer -Becoming opaque	Very active	Myosin begins to denature, coagulate		Escape and accumulation accelerate	
130°F 55°C	Medium rare, 130-135°F -	-Resilient to touch -Less slick, more fibrous -Releases juice when cut Opaque, lighter rea	Denature, become inactive, coaguiate	Myosin coagulated	Collagen sheaths begin to weaken		
140°F 60°C	Medium, 130-145°F	-Begins to shrink -Losing resilience -Exudes juice -Red fades to pink		Other fiber proteins denature, coagulate	Collagen sheaths shrink, squeeze cells	Flows from cells under collagen pressure	Begins to denature

High temperature cooking:

- Large temperature gradient
- No control on the final temperature

50°C: rare
55°C: medium rare
60°C: medium
>60°C: not an option

The Maillard reaction, the key to a tasteful steak.

Louis Camille Maillard (1878-1936)

In 1912 Maillard discovered that around 120°C-165°C, sugars and amino acids will combine to form complex molecules that are responsible for the odors and flavors of our cooked food.

The Maillard reaction, a high temperature stage in the cooking process.

Pan seared

High Temperature Oven

Low temperature cooking:

Vacuum

1h-2h cooking

Maillard

Oven at Low Temperature (~<80°C)

55°C-57°C (~1h)

Maillard

Online course:

HarvardX: SPU27x Science & Cooking: From Haute Cuisine to Soft Matter Science

Low temperature cooking:

http://www.cuisinebassetemperature.com/ tableau-recapitulatif-de-cuisson-a-bassetemperature/

Tableaux de cuisson basse température et sous vide														
Tableaux de cuisson FOUR TRADITIONNEL à basse température														
www.puisinebasselemperature.com Phillippe Baratte, Yotre Chet toqué du thermomètre Copyright © 2014 Baratte Philippe Toute reproduction interdite sans l'autorisation de l'auteur. Tous droits réservés.														
										BŒUF	SAISIR	DURÉE MOYENNE DE CUISSON FOUR TRADITIONNEL	T° DU FOUR	T° A CŒUR
										<u>CÔTE (1.800 kg)</u>	5 min	232 houres	80%	56°C (à point)
CÔTES COUVERTES (800 d)	4 min	2 houres	80 °C	50°C (à point)										
EMINCE (899 o = 4 portions)	30sec/portion	35 min	55*C											
ENTRECÔTES (200 pt	1 min	49 min	80*C	56°C (à point)										
ENTRECÔTES DOUBLES (400 g)	1% min	1 heure	80*C	55°C (à point)										
FILET (800 g)	4 min	1½ heure	60. ₀ 0	55°C (à point)										
MEDAILLONS (100 g)	1 min	35 min	75°C	55°C (à point)										
PAUPIETTES (150g)	1 min	45 min	75°0	68° C										
PAVES (200.g)	195 min	45 min	0°08	55°C (à point)										
ВÖTI (800- <u>6)</u>	4 min	2 heures	0708	55°C (à point)										
BŐTI (2 kg)	10 min	3 heures	8010	55°C (à point)										
RUMSTECK (800 g)	4 min	2 heures	8010	55°C (à paint)										
STEAKS (200 g)	1 min	45 min	75°C	55°C (à paint)										