Part ll:Inertial Waves and Inertial Modes

Lecture by J. Noir at WITGAF Cargese, Corsica, 2019

Kinetic energy
(—6.60 x 107°, 0.69220)

Axisymmetric inertial modes in a spherical shell at low Ekman numbers:
M. Rieutord and L Valdettaro, 2018

Experiment by Goertler 1957, picture from: The theory of

rotating fluids by H. P. Greenspan 1968 1 J.Noir (ETHZ) - WITGAF Cargese July 2019



1. Some observations.
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What makes rotating fluids so special...

Let's now consider another example.
We still consider the case of a small perturbation but this time it is an oscillatory forcing

e Let's first consider a cylindrical tank filled with
water that is not rotating.

e At the centre we put a small disk that
oscillates vertically at a frequency ms.
 The camera rotates with the cylinder

What do you expect to see from
the camera ?
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What makes rotating fluids so special...

Let's now consider another example.
We still consider the case of a small perturbation but this time it is an oscillatory forcing

()

e Let's now consider a cylindrical tank filled
with water that is rotating at Qo.

e At the centre we put a small disk that
oscillates vertically at a frequency ms.
 The camera rotates with the cylinder

What do you expect to see from
the camera ?
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What makes rotating fluids so special...

Let's now consider another example.
We still consider the case of a small perturbation but this time it is an oscillatory forcing
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What makes rotating fluids so special...

Let’s now consider another example of perturbations of a rapidly rotating fluid.
We still consider the case of a small perturbation but this time it is an oscillatory forcing

* A rapidly rotating fluid system
can support waves propagation,
the so-called inertial waves.

* |n a bounded fluid, like a cylinder
the waves can from constructive
interferences and forms |nertial
modes.

Experiment by Goertler 1957, picture from: The theory of
rotating fluids by H. P. Greenspan 1968
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Part ll:Inertial Waves and Inertial Modes

2. Inviscid Inertial Waves.
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The non rotating inviscid case in a closed container

Let’s consider the case

No external force
no rotation
low viscosity fluid

small oscillations
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The non rotating case in a closed container

In the volume On the surface

10

/ h - VIS = / (cbﬁ?qf + V- Wf) dV
S V
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The non rotating case in a closed container

In the volume On the surface

11

/ h - VIS = / (cbﬁ?qf + V- Wf) dV
S

’
/Sszfv( +€H-6H)dv
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The non rotating case in a closed container

In the volume On the surface

/ h - VIS = / (cbﬁ?qf + V- Wf) dV
S

g
/SS=/V(+€H-§H)CZV

0=/€H2dv » VII =0
V

In the volume
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The non rotating case in a closed container

_VII =0

< Sg|§i

A

u=0, n-u=0|g

Non-rotating, inviscid and neutrally buoyant
fluids cannot sustain inertial oscillations. What
we observe in the numerical simulations is the

viscous diffusion of momentum, the stokes layer.
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Inviscid Inertial waves eqguation:

—

8%  ~ . . . ia
a—z+29xﬁ+ﬁ-Vﬁ:—VH+EV2ﬁ+Fx —+ ]

Let’s consider the case

No external force
constant rapid rotation

low viscosity fluid

small oscillations (u<<Qr)
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The rotating case: Inertial waves

Substitution of this particular form of solutions in the unforced equations leads to:

@ From the continuity equation we deduce that the velocity is perpendicular to the wave vector:
u-k=0

@ From the Navier-Stokes equation we deduce that the angle between the wave vector and the rotation
vector is given by the dispersion relation:

: = 420 cos 0

Where, 0 is the angle between the wave vector and the rotation axis. Wave like solution exist only for
frequencies

0< |2 <2
Q
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Inertial waves properties

Like any other waves, inertial waves have a phase and group velocity

Phase velocity

Velocity at which one should propagate to see a constant phase, k - r — wt = cte

a = 2Q2 cos(@)L (100)

The phase velocity is along k. No energy, i.e. information, propagates with V4
y

Group velocity

Velocity at which energy, i.e. information, propagates in the system.
k x (€2 x k) ()

. V4| = 2=sin6
7k

@ The energy propagates perpendicularly to the phase velocity, i.e. to the wave vector.
@ The energy propagates faster for small wave numbers, i.e. large scale perturbations.

@ Over one oscillation of the wave, the energy propagates over a typical length scale L = V /w = )\% with
A = 1/k the wave length.

y
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Inertial waves propagation from a localized perturbation

Let's imagine a velocity perturbation, here in red, the gradient of velocity propagates along cones with a
semi-aperture angle 6 given by the dispersion relation:

w
— = £2cos(0)
Q

N
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Reflection of inertial waves:

18
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Inertial waves in the laboratory

Adapted from a figure by Benjamin Favier, ENS Lyon,
France. now at IRPHE, Marseille.

Experiment by Goertler 1957, picture from: The theory of
rotating fluids by H. P. Greenspan 1968
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Oscillatory rotating flows.

Adapted from a figure by Benjamin Favier, ENS Lyon, France. In agreement with the dispersion relation, the
apex angle decreases with the frequency and the distance from the perturbation the energy propagates over
one cycle increases. now at IRPHE, Marseille.
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The limit of inertial waves with w tends to zero.

@ According to the inertial waves properties we just saw, the limit cases w = 0 would correspond to

perturbation that propagates along cones that are degenerated into columns aligned with the axis of
rotation.

PO Bt

hantorn Obstacle

e Taylor-Proudman is the limit case of
the advection of a perturbation by a
quasi steady inertial waves.

* The energy propagates parallel to the
axis of rotation due the vertical
motion.

()
V,l =2
K

Even for a steady perturbation the group velocity remains finite
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Part ll:Inertial Waves and Inertial Modes

3. Inviscid Inertial Modes.

22 J.Noir (ETHZ) - WITGAF Cargese July 2019



Inviscid Inertial Modes

In a closed container the inertial waves equation becomes an eigenvalue
problem, the eigenfunctions are the inertial modes.

Z.wN’L_L)N—FQQX”L_L)N—I—ﬁﬂN:O G'ﬁNoa ﬂﬁNOa

* The spectrum is dense.
* They are orthogonal to each other. /V Uy - uprdv =0

* In certain well behaved geometries, they form a base.

U = E Qy, U, e'ent

n
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Part ll:Inertial Waves and Inertial Modes

4. \/iscous Correction.
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First order viscous correction to the inviscid inertial modes

— +20x@=-VII+EV2@+7

ﬁ-ﬁzo,@zms)

Inviscid inertial modes do not satisfy the no-slip
boundary conditions.
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First order viscous correction to the inviscid inertial modes

91 - 3} )
a—?+2@xa:—vn+Ev2ﬁ

V.7=0, a:o@

Inviscid inertial modes do not satisfy the no-slip
boundary conditions.

Inviscid interior at large scale 20 x @ >> EV3i

ou - S
— 4+ 20 x u = —VII
ot
Viscous Boundary Layer. 20 X @ ~

5§ ~VE ~ O(1)
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First order viscous correction to the inviscid inertial modes

Following Greenspan 1968:

i =ux + VEiy + O(EY)
i =ud + VEuy + O(EY)

1
Wy = W + iANVE + O(EY), a > 5

1-Inviscid interior at leading order

oy~ B, e
%—FZQX{L’O:—VHO il - dp|s = 0

2-Viscous Boundary Layer at leading order.

o0~ i L
a—;‘+29xa=—vn+Ev2a o + gls = 0

A

3-Inviscid interior at order ' E - (i +1)=0

The solvability condition lead to an expression of Ay , the rate at which an inertial mode N
will decay in time if not forced continuously.
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First order viscous correction to the inviscid inertial modes

Summary:

Inertial modes with viscous correction have
at leading order the structure of the
inviscid mode on which superimposed a
small flux coming from the Ekman
boundary layer, the so-called Ekman
pumping. By friction in the boundary layer,
they dissipate energy, this viscous
damping is characterised by a decay rate.

Further corrections can be made by
pushing the expansion to the next order in
E.
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The secondary flow driven by the Ekman pumping: What do you see if you rotate with the fluid ?

Ekman pumping driven inertial waves

Q

o

A

1 theta u l)hi

0.002 _p.002

Time=711.639

Bondi and Littleton, Stewartson and courtesy of Yufeng Lin

Roberts 1963, Kerswell 1995, Noir et al.
2001, Kida 2011



The secondary flow driven by the Ekman pumping: What do you see if you rotate with the fluid ?

Ekman pumping driven inertial waves

£, £

4 A

Bondi and Littleton, Stewartson and
Roberts 1963, Kerswell 1995, Noir et al.
2001, Kida 2011



Courtesy of Jeremie
Vidal (Grenoble/
Leeds)

31

J.Noir (ETHZ) - WITGAF Cargese July 2019



The Poincaré mode in spheroidal shell: The simplest inertial mode.

The simplest inertial mode is a quasi solid body rotation along an equatorial direction.known
under various hames:
* Q211 mode, Spin-over mode. (Greenspan)
« Poincaré mode. (Too many people)
- Tilt-over mode, (Toomre, Noir, Zhang)
* (110)-mode (K. Zhang)
* FCN: Free Core Nutation (Astronomers)

Sphere = purely Spheroid = elliptical
circular streamlines streamlines
U110 = 110 X T U110 = 2110 X 7+ Vo Q 1+ (1—1n)?2

This mode has a uniform vorticity, the velocity is linear is the spatial coordinates.
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Part ll:Inertial Waves and Inertial Modes

5. Resonances, large tlows from small perturbations.
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Probing planetary interiors through the variation of their rotation.

Librations Precession / Nutations

nasa.gov nasa.gov

nasa.gov
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Libration in Longitude

Axisymmetric inertial oscillations of a fluid in a
rotating spherical container

By KEITH D. ALDRIDGEf AND ALAR TOOMRE

Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received 22 August, 1968)
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Fraure 3. Pressure amplitudes at tho centre of the sphere, for ¢ = 8-0°.
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Libration in Latitude

Libration in latitude -/F > \

Motor 2 |; :l == ' Global rotation
,'—'.Ff—\ /‘
B — \ Motor 1
. swalV
/ \ .
—Jl
= — —— s

Figure 2.1 Schematic representation of a latitudinal libration experiment.
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Planetary core flows driven by precession:

Let’s consider a homogeneous fluid, of uniform density, enclosed in a rapidly rotating spheroidal cavity.

The cavity shape is characterised by (a,c) the equatorial and polar radius respectively.

Noir 2000

Control
parameters
1%
E = 5
O.R
()
Po= -~
(2
a — C
77 p—
a
8




As the mantle precesses, the core remains in rotation
but along a slightly tilted axis.

Fluid Core

Q, Qf §p Precession

Sloudsky 1895, Poincare 1910, Busse

1968,
Noir and Cebron 2015, Cebron et al 2019.
QS Qf Q’p

In the frame of precession, i.e. the turntable, the rotation of the fluid and of the mantle
are fixed, viewed from the lab both axis are precessing at the same rate.



Let’s look at the equations in the frame attached to the mantle, ¢ =@, + q,

= T . . dQ
= — % +20 x @ = —VI+ EV*i + 7 X —
Control parameters ——— | ——7q,
_ V- -%=0
="~ 10" =0 Atthe S s LG
a [dQ G, % Q}
I _19 dt Qg
E = W 10
Po = Q—p ~107%
s Viewed from an observer fixed on
a=1.5°

the mantle, this vector travels in a
retrograde direction with the
period of rotation of the mantle:

The Poincare acceleration takes the form of a solid body rotation and appears
as a forcing term in the equations.



Let’s look at the equations in the frame attached to the mantle, ¢ =@, + q,

on , dQ
o — 4+ 20 xu=—-VII4+7x —
= — g T MR
Control parameters —t A, ,
a—c | B posinalcos(t)e, + sin(t)e,)
— 3 — = FPosiho - 1n
n = - ~ 10~% dt i
V-d=0
__Y 112
=~ 10
Po= 2 . _jp-4 3} 3
g U110 = 110 X 7+ Vo
a=1 .50 —————
@)
=

The Poincare acceleration takes the form of a solid body rotation and appears

as a forcing term in the equations.



Let’s look at the equations in the frame attached to the mantle, ¢ =@, + q,

. . 0
—|—2Q><ﬁ:—VH—|—F><CfZ—t

Mantle ~—~u Fluid Core

The Poincare acceleration takes the form of a solid body rotation and appears
as a forcing term in the equations.



To go further

1. Greenspan section 2

2. K.K. Zhang section 2

3. S. Vantieghem 2014, PRSL, Inertial modes in a
rotating triaxial ellipsoid,

4. lvers et al. 2015, JFM: Enumeration , orthogonality
and completeness of the incompressible Coriolis
modes In a sphere.
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Resonance between the Poincaré mode (FCN) and the Precession / Nutation Forcing

—

!
I
)

s+ 0,

Resonance

In the limit: n<<l, Po<<l1 a<<l1



