Dynamics of accretion discs

Geoffroy Lesur

WITGAF
Cargese, 15 July 2019
with thanks to
William Béthune (DAMTP)
Antoine Riols (IPAG)
Matthew Kunz (Princeton)
François Ménard (IPAG) Jonathan Ferreira (IPAG)
Sébastien Fromang (CEA)

UNIVERSITĖ Grenoble 3 Alpes

What is the most efficient way to convert the rest mass energy of matter into heat?

A- Burning fuel $\quad 4 \times 10^{-8} \%$
B- Nuclear fission 0.09 \%
C- Nuclear fusion 0.09 \%
D-?
Black hole
particle at rest at infinity
particle in orbit at the last stable orbit

Accretion disc around a black hole: up to 40% efficiency

Overview

- A few fun facts about astrophysical discs (10’)
- How to drive accretion (30’)
- On the difficulty of driving hydrodynamic turbulence (30')
- A short introduction to magnetised wind flows (60’)
- Application to protoplanetary discs (20')

Protoplanetary discs

Credit: C. Burrows and J. Krist (STScl), K. Stapelfeldt (JPL) and NASA

Artist view

- Size $10^{9}-10^{13} \mathrm{~m}$
- Central object: young star (1030 kg)
- Temperature 103-10 K

Structures in protoplanetary discs

[Huang+ 2018]

Compact binaries

Artist view

- Size 104-108 m
- Central object: white dwarf, neutron star, black hole (1030 kg)
- Temperature $10^{5}-10^{3} \mathrm{~K}$

Active galactic nuclei (blazars, quasars...)

M87

- Size 1010-1015 m
- Central object: black hole ($1036-10^{39} \mathrm{~kg}=10^{6}-10^{9} \mathrm{M}$ sun)
- Temperature 105-102 K

M87: staring at a supermassive black hole

Model of M87

General relativistic
magneto-hydrodynamic model

M87 April 6

Overview

- A few fun facts about astrophysical discs (10')
- How to drive accretion (30’)
- On the difficulty of driving hydrodynamic turbulence (30')
- A short introduction to magnetised wind flows (60')
- Application to protoplanetary discs (20')

Equations of motion

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot \rho \boldsymbol{u}=0 \\
& \rho\left(\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right)=-\nabla\left(P+\frac{B^{2}}{8 \pi}\right)+\frac{\boldsymbol{B} \cdot \nabla \boldsymbol{B}}{4 \pi} \\
& \text { Magnetic pressure Magnetic tension }
\end{aligned}
$$

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B}) \quad \triangleleft \frac{\partial \boldsymbol{B}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{B}=\boldsymbol{B} \cdot \nabla \boldsymbol{u}-\boldsymbol{B} \nabla \cdot \boldsymbol{u}
$$

Transport
Warping

Compression

Disc Dynamics
 Radial equilibrium

$$
\begin{gathered}
\text { Radial equilibrium } \\
\frac{\partial u_{r}}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} u_{r}-\frac{u_{\phi}^{2}}{R}=\frac{\boldsymbol{B} \cdot \boldsymbol{\nabla} B_{r}}{4 \pi \rho}-\frac{B_{\phi}^{2}}{4 \pi \rho R}-\frac{1}{\rho} \frac{\partial\left(P^{2}+B^{2} / 8 \pi\right)}{\partial R}-\frac{G M_{\odot}}{R^{2}}
\end{gathered}
$$

- Assume a thin, weakly magnetised disc

$$
\begin{aligned}
& v_{A} \ll u_{\phi} \quad c_{S} \ll u_{\phi} \quad\left(u_{r}, u_{z}\right) \ll u_{\phi} \\
& \quad u_{\phi}=R \Omega(R) \quad \text { with } \quad \Omega(R)=\left(G M_{\odot}\right)^{1 / 2} R^{-3 / 2}
\end{aligned}
$$

- Disc temporal evolution dictated by small deviations from the Keplerian profile:

$$
\boldsymbol{u}=\boldsymbol{v}+R \Omega(R) \boldsymbol{e}_{\boldsymbol{\phi}}
$$

Disc Dynamics

$$
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0
$$

Introduce: $\bar{Q}=\int d \phi \int_{z=-h}^{z=+h} d z Q \quad$ and $\quad \Sigma=\bar{\rho}$

$$
\frac{\partial \Sigma}{\partial t}+\frac{1}{R} \frac{\partial}{\partial R} R \overline{\rho v_{r}}+\left[\rho v_{z}\right]_{z=-h}^{+h}=0
$$

Disc Dynamics
 Angular momentum conservation

Angular momentum conservation:

$$
\frac{\partial\left(\rho R u_{\phi}\right)}{\partial t}+\boldsymbol{\nabla} \cdot\left[\rho R u_{\phi} \boldsymbol{u}-R \frac{B_{\phi} \boldsymbol{B}}{4 \pi}+R\left(P+\frac{B^{2}}{8 \pi}\right) \boldsymbol{e}_{\phi}\right]=0
$$

Combine it with mass conservation, squeeze it, stretch it:

$$
\overline{\rho v_{r}} \frac{\partial}{\partial R} \Omega R^{2}+\frac{1}{R} \frac{\partial}{\partial R} R^{2}\left[\overline{\rho v_{\phi} v_{r}}-\frac{\overline{B_{\phi} B_{r}}}{4 \pi}\right]+R\left[\rho v_{\phi} v_{z}-\frac{B_{\phi} B_{z}}{4 \pi}\right]_{z=-h}^{+h}=0
$$

vertical stress (aka wind stress)

Disc Dynamics

- Introduce the dimensionless number

$$
\alpha=\frac{\overline{\rho v_{\phi} v_{r}}-\overline{B_{\phi} B_{r}} / 4 \pi}{\Sigma \Omega^{2} H}
$$

- Estimated accretion rate

$$
\overline{\rho v_{r}} \sim-\alpha c_{s} \Sigma \frac{H}{R}
$$

- Compare to observations: $10^{-4}<\alpha<10^{-1}$

New questions!

- What is responsible for anomalous viscosity?
- How large is α ?
- What about winds ?

The zoo of disc instabilities

Local instabilities:

- Magnetorotational instability (MRI): shear driven instability but requires an ionised plasma (Velikhov 1959, Chandrasekhar 1960, Balbus \& Hawley 1991)

COVERED BY C. BARU'TEAU

- Gravitational instabilities: only for massive \& cold enough disc
(Gammie 2001, Paardekooper 2012)
COVEREID BY C. BARU'TEAU
- Subcritical shear instability: probably not efficient enough, if it exists (see later) (Lesur \& Longaretti 2005, Schartman et al. 2012, Edlund \& Ji 2014)
- Vertical Shear instability: driven by vertical shear (actually link to the baroclinicity of the disc) (Urpin \& Brandenburg (1998), Nelson+ 2013, Barker \& Latter 2015)

COVEREID BY C. BARUTIEAU

- «Baroclinic » instabilities (SBI, convective overstability): requires a radially unstable entropy profile (Petersen+ 2007, Lesur \& Papaloizou 2010, Klahr \& Hubbard 2014)

COVERED BY C. BARUTIEAU

- Zombie vortex instability: buoyancy critical layer instability
(Marcus+ 2013, Marcus+2016, Lesur \& Latter 2016)
- Rossby wave instability: requires a local maximum of vortensity (equivalent to Kelvin-Helmholtz) (Lovelace et. al 1999)
- Vertical convective instability: Requires a heat source in the midplane (Cabot 1996, Lesur \& Ogilvie 2010, Held \& Latter 2018)

Global instabilities:

- Papaloizou \& Pringle instability: density wave reflection on the inner edge

Overview

- A few fun facts about astrophysical discs (10')
- How to drive accretion (30')
- On the difficulty of driving hydrodynamic turbulence (30')
- A short introduction to magnetised wind flows (60')
- Application to protoplanetary discs $\left(20^{\prime}\right)$

Subcritical shear instabilities
 Origins

The Facts:

- Keplerian shear flows are linearly stable
- Huge Reynolds numbers (1015) \Rightarrow nonlinear instability? (same thing as pipe flows or Couette flows)

pipe flow

couette flow

A nonlinear instability in accretion discs?

- Experimental approach: hard to «do» a disc in a lab. Boundary conditions?
- Numerical approach: high Reynolds numbers unreachable: $R e \lesssim 10^{4}$

Ideal TaylorCouette

Real life Couette-Taylor (Schartman et al. 2012)

A boundary problem

Turbulence excited by Ekman layers

$R_{s}=9655$

$R_{s}=19310$

$R_{s}=32180$

Lopez \& Avila (2017)

Can non-linear, shear-driven, instabilities, if they exist, transport angular momentum efficiently in Keplerian flows?

A contentious debate...

Theory and simulations:

- Zeldovich (1981): maybe yes
- Durbulle (1993): maybe yes
- Balbus, Hawley \& Stone (1996): no
- Richard \& Zahn (1999): maybe yes
- Longaretti (2002), Chagelishvilli+ (2003), Tevzadze+ (2003), Yecko (2004), Umurhan \& Regev (2004), Mukhopadhyay+ (2005), Afshordi+ (2005), Dubrulle+ (2005), Ogilvie \& Garaud (2005): maybe yes
- Lesur \& Longaretti (2005): no
- Rincon+ 2007, Lithwick (2007, 2009), Mukhopadhyay+ (2011), Avila (2012), Mukhopadhyay \& Chattopadhyay (2013): maybe yes
- Osticlla-Monico+ (2014): maybe no
- Bhatia \& Mukhopadhyay (2016): maybe yes
- Lopez \& Avila (2017), Shi+ 2017: no

Laboratory experiments

- Richard \& Zahn (2001): yes
- Beckley \& Colgate (2002): maybe no
- Kageyama+ (2004): maybe no
- Ji+(2006), Schartman+ (2012): no
- Paoletti \& Lathrop (2011), Paoletti (2012): yes
- Edlund \& Ji (2014): no
- Nordslek + (2015): maybe no
- Edlund \& Ji (2015): no

Finally converging to a «no » (but no formal proof)

Overview

- A few fun facts about astrophysical discs (10')
- How to drive accretion (30')
- On the difficulty of driving hydrodynamic turbulence (30')
- A short introduction to magnetised wind flows (60')
- Application to protoplanetary discs (20')

Magnetised winds: a MRI mode becoming non-linear

From angular momentum conservation, particle A gets a faster angular velocity while particule B gets slower

The accumulated toroidal field create a vertical magnetic pressure gradient, pushing B upwards and A downwards

As particles A and B drift, an azimuthal magnetic field builds up between the particles

Outflows

Framework

We assume stationary, axisymmetric, ideal MHD
Field strength controlled by the plasma $\beta_{p}=\frac{8 \pi P_{\text {midplane }}}{B_{z}^{2}}$ parameter.

Stationary equations

The need for a magnetically diffusive disc

$$
\begin{aligned}
& \begin{array}{ll}
\nabla \cdot \boldsymbol{B}_{p}=0 & \text { (solenoidal condition) } \\
\nabla \cdot \rho u_{\boldsymbol{p}}=0 & \text { (mass \& solenoidal condition) }
\end{array} \quad \boldsymbol{B}_{p}=\frac{1}{R} \nabla a \times \boldsymbol{e}_{\phi} . \\
& \nabla \cdot \rho u_{p}=0 \\
& \rho u_{p} \cdot \nabla u_{R}=\rho \Omega^{2} r-\partial_{R} P+\frac{J_{\phi} B_{z}}{c}-\frac{J_{B} B_{\phi}}{c}-\rho \partial_{R} \varphi \text { (R-momentum) } \\
& \nabla \cdot\left(\rho u_{\rho} \Omega R^{2}-R \frac{B_{p} B_{\phi}}{4 \pi}\right)=0 \\
& \rho u_{p} \cdot \nabla u_{z}=-\partial_{z} P-\partial_{z}\left(\frac{B_{\phi}^{2}+B_{R}^{2}}{8 \pi}\right)+\frac{B_{R} \partial_{R} B_{z}}{4 \pi}-\rho \partial_{z} \psi \quad \text { (z-momentum) } \\
& \nabla \times\left(\boldsymbol{u}_{p} \times \boldsymbol{B}_{p}\right)=0, \\
& \nabla \cdot \frac{1}{R}\left(\Omega R B_{p}-B_{\phi} u_{p}\right)=0 . \\
& \text { not possible } \\
& \text { in the disc }
\end{aligned}
$$

non-ideal MHD region

Stationary equations Critical points

The system of equations has 3 critical points (= critical layers for hydro people)

An outflow is causally « disconnected » from its launching point once it has crossed all three critical points

Stationary equations

$\left.\begin{array}{c}\nabla \cdot B_{p}=0 \\ \nabla \cdot \rho u_{p}=0\end{array}\right) \quad \kappa(a) \equiv \frac{\rho u_{p}}{B_{p}} \quad$ «mass loading parameter»
$\rho u_{p} \cdot \nabla u_{R}=\rho \Omega^{2} r-\partial_{R} P+\frac{J_{\phi} B_{z}}{c}-\frac{J_{z} B_{\phi}}{c}-\rho \partial_{R} \psi$
$\nabla \cdot\left(\rho u_{\rho} \Omega R^{2}-R \frac{B_{p} B_{\phi}}{4 \pi}\right)=0 \quad \Omega^{*}(a) R_{A}^{2}=\ell(a) \equiv \Omega R^{2}-\frac{R B_{\phi}}{4 \pi \kappa(a)}$ « angular momentum parameter »
$\rho u_{p} \cdot \nabla u_{z}=-\partial_{z} P-\partial_{z}\left(\frac{B_{\phi}^{2}+B_{R}^{2}}{8 \pi}\right)+\frac{B_{R} \partial_{R} B_{z}}{4 \pi}-\rho \partial_{z} \psi$
$\nabla \times\left(u_{p} \times B_{p}\right)=0$,
$\nabla \cdot \frac{1}{R}\left(\Omega R B_{p}-B_{\phi} u_{p}\right)=0 . \square \Omega^{*}(a) \equiv \Omega-\frac{\kappa(a)}{\rho R} B_{\phi}$ «rotation speed of magnetic surfaces »

In addition, one can create an energy invariant :

$$
\mathcal{B} \equiv \frac{u^{2}}{2}+\psi_{G}+\mathcal{H}-\frac{R \Omega^{*}(a) B_{\phi}}{4 \pi \kappa(a)} \text { «Benoulli invariant» }
$$

Back to the accretion problem

Angular momentum conservation:

$$
\overline{\rho v_{r}} \frac{\partial}{\partial R} \Omega R^{2}+\frac{1}{R} \frac{\partial}{\partial R} R^{2}\left[\overline{\rho v_{\phi} v_{r}}-\frac{\overline{B_{\phi} B_{r}}}{4 \pi}\right]+R\left[\rho v_{\phi} v_{z}-\frac{B_{\phi} B_{z}}{4 \pi}\right]_{z=-h}^{+h}=0
$$

accretion radial stress $\begin{gathered}\text { vertical stress } \\ \text { (aka wind stress) }\end{gathered}$
Using MHD invariants:

$$
R\left[-\frac{B_{\phi} B_{z}}{4 \pi}\right]_{-h}^{+h}=R \frac{B_{z 0}^{2}}{4 \pi} \kappa(\lambda-1)
$$

Once the MHD invariants are known for a given solution, one can predict the accretion rate, and mass loss rate

Typical solutions Sef-similar solutions

Typical « cold wind » solution

[Casse \& Ferreira 2000]

Typical solutions

Self-similar solutions

Casse \& Ferreira (2000)

Numerical simulations

Overview

- A few fun facts about astrophysical discs (10^{\prime})
- How to drive accretion (30')
- On the difficulty of driving hydrodynamic turbulence (30')
- A short introduction to magnetised wind flows (60')
- Application to protoplanetary discs (20')

Accretion rate onto the stellar surface

Ionisation sources in protoplanetary discs

Cosmic rays

«non ideal » MHD effects

- Ohmic diffusion (electron-neutral collisions)
- Ambipolar Diffusion (ion-neutral collisions)
- Hall Effect (electron-ion drift)

Amplitude of these effects depends strongly on location \& composition

Some technical « details » are intentionally hidden...

Ambipolar diffusion

[Thi+2018]

What do observers say?

Line broadening

- Emission lines from the gas are broaden by:
- Keplerian rotation V_{k}
- Thermal velocity $v_{\text {th }} \simeq c_{s} \ll V_{k}$
- Turbulence $v_{\text {turb }} \simeq \sqrt{\alpha} c_{s}$

Figure 6. $\mathrm{CO}(3-2)$ high resolution spectra (black line) compared to the median model when turbulence is allowed to move toward very low values (red dotteddashed lines) or when it is fixed at $0.1 \mathrm{~km} \mathrm{~s}^{-1}$ (blue dashed lines). All spectra have been normalized to their peak flux to better highlight the change in shape. The models with weak turbulence provide a significantly better fit to the data despite the fact that the turbulence is smaller than the spectral resolution of the data.

Dust settling (I)

The thickness of the dust layer depends on the competition between settling and turbulent mixing

Dust settling in edge on discs

mm-sized dust grains are strongly settled \quad low level of turbulence

Summary: Failure of the turbulent disc model

Theoretical

Discs are very weakly ionised
"Non-ideal" MHD effects

MHD turbulence too weak to explain observed accretion rates [Turner+2014, PPVI]

Observational

- Turbulent line broadening (CO, DCO+) smaller than expected from MHD turbulence [Flaherty +2015 , 2017]
- Vertical dust settling stronger than expected from MHD turbulence [Pinte+2016]

Turbulence (if it exists) is much weaker than anticipated in the turbulent disc model

Key questions

What drives accretion in protoplanetary discs?
Which process is responsible for the large scale structures we observe?

Wind-driven accretion in magnetically « dead » discs

[Wardle \& Konigl 1993, Bai+ 2013, Lesur+ 2014, Simon+ 2015 in local models, Gressel+2015, Béthune+2017, Bai 2017, Wang+ 2018, ... in global geometry]

Global simulations Numerical setup

Locally isothermal model ($T \propto R^{-1}$)

Global picture

$\beta_{p}=10^{4}, \mathrm{Am}_{\text {mid }}=1$ average from $\mathrm{t}=1700$ orbits to $\mathrm{t}=2400$ orbits

Wind invariants

Take 4 representative streamlines and compute ideal MHD invariants

Accretion rate, mass loss rate

- Typical accretion rate~ $10^{-8}-10^{-6} M_{\odot} / \mathrm{yr}$
- Accretion rate mostly controlled by the magnetic flux $\dot{M} \propto \beta^{-(0.5-1)}$
- Wind efficiency defined from

$$
\begin{aligned}
& \dot{M}_{\text {wind }}=\int_{R_{\text {in }}}^{R} \mathrm{dR} R\left[\rho u_{z}\right]_{\text {surface }} \\
& \xi=\frac{1}{\dot{M}} \frac{\mathrm{~d} \dot{M}_{\text {wind }}}{\mathrm{d} \log R}
\end{aligned}
$$

- Typically have $\xi=0.2-1$
corona heating leads to larger ξ

[Casse \& Ferreira 2000, Béthune+2017, Bai 2017, Wang+2018]

Turbulence?

$$
v_{\text {turb }}=\left\langle(v-\langle v\rangle)^{2}\right\rangle^{1 / 2}
$$

Typical velocity fluctuations of the order of 1% of the sound speed

Compatible with observed turbulent broadening of CO lines

Dust Dynamics @ 30 AU

~mm size dust

[Riols \& Lesur 2018]

A few take away points

- Astrophysical discs can be accreting thanks to anomalous viscosity (turbulence, waves), or magnetised winds
- shear-driven hydrodynamic turbulence is notoriously difficult to trigger in Keplerian flows
- Winds are full non linear solution to the MHD equations. They require a large scale poloidal field, and some magnetic diffusion in the disc (to allow for accretion)
- In protoplanetary discs:
- magnetic diffusion suppresses the MRI, but it provides the diffusion required by wind solutions.
- these laminar wind solutions naturally reproduce some of the observed features of these discs: accretion rate, low level of turbulence, strong dust settling.

Testing jets kinematics

Observing M87

Ejection evidence in HL tau

Figure 3: Observation of an atomic jet and a molecular wind observed in $\mathrm{CO}(2-1)$ by ALMA in HH30, a protoplanetary disc seen edge-on. Courtesy of C. Dougados (Dougados et al. 2017)

