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Introduction

There are primarily three special characteristics in rapidly (the small

Ekman number E) rotating fluids:

• An overwhelming constraint on fluid motions imposed by

controlling rotational forces;

• A unique type of oscillatory motions, inertial oscillations and

inertial waves, solely caused by the action of rotational forces;

• A viscous boundary layer, produced by the effect of fast rotation,

that differs markedly from that in non-rotating configurations.
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Introduction

• In a unified asymptotic approach for a rapidly rotating system, the

governing equations may be cast in the form

∂u

∂t
+ 2Ω× u+

1

ρ
∇p = {small and boundary terms...} , (1)

∇ · u = 0, (2)

Other equations (such as Energy Equation)... (3)

where the terms marked by brackets, which may contain the

Poincaré force r× (∂Ω/∂t) or the thermal buoyancy force gαΘ or the

viscous force ν∇2u,..., are either multiplied by small parameters or

physically small because the Coriolis force dominates and controls

the dynamics of a rapidly rotating fluid system.
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Introduction

• A unified approach to the theory of rotating flows hinges on the

existence of mathematically explicit/complete and relatively simple

analytical solutions for the system in which the terms marked by

brackets are neglected.

• The system supports waves/oscillations enabled solely by the

Coriolis force in completely filled, rapidly rotating fluid systems.
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Introduction

Significant progress can be made if we piece together the four

essential ingredients that are not only unique but also most

fundamental to fluid dynamics in rotating systems:

(i) inertial waves or inertial oscillations,

(ii) viscous boundary layers,

(iii) interplay between inertial waves/oscillations and viscous

boundary layers, and

(iv) excitation/selection of inertial waves/oscillations by thermal

instabilities or Poincaré or other forces.
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An example of the unified asymptotic approach:
Convection in rapidly rotating spheres with 0 < E ≪ 1

• The most asymptotic and numerical studies point to a consensus

that the preferred mode of convection in rapidly rotating spheres

with 0 < E ≪ 1 is axially nonsymmetric and equatorially symmetric

(columnar-roll structure)(Busse 1970)

• This example presents an asymptotic theory describing axially

symmetric and equatorially antisymmetric convection – whose flow

velocity u and pressure p are fully analytical, simple and in closed

form – that is in quantitative agreement with the numerical solution.
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Mathematical Formulation

The problem of thermal convection in a sphere is governed by the

dimensionless equations:

∂u

∂t
+ u · ∇u+ 2ẑ× u+∇p = +RΘr+ E∇2u, (4)

(Pr/E )

(
∂Θ

∂t
+ u · ∇Θ

)
= u · r+∇2Θ, (5)

∇ · u = 0, (6)

where Θ represents the deviation of the temperature from its static

distribution, p is the total pressure, and u is the velocity of convection. The

equations are solved subject to perfectly conducting (isothermal),

impenetrable and stress-free conditions

∂(ϕ̂ · u/r)
∂r

=
∂(θ̂ · u/r)

∂r
= r̂ · u = Θ = 0 at r = 1. (7)
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Asymptotic Analysis

Torsional convection (where the PT Theorem is defeated by inertial

effects) suggests the following expansion for 0 < E ≪ 1:

u = [u0(r, θ) + (ũ+ û)] ei2σt, (8)

p = [p0(r, θ) + (p̃+ p̂)] ei2σt, (9)

Θ = Θ0(r, θ)e
i2σt + . . . , (10)

σ = σ0 + σ1, (11)

where σ denotes the half frequency (the frequency ω = 2σ) of torsional

convection with 0 < |σ| < 1, û, p̂ and σ1 represent small perturbations

caused by viscous effects, to the leading-order solution u0, p0 and σ0, and

satisfy |û| ≪ |u0| and |σ1| ≪ |σ0|, and ũ denotes a weak viscous boundary

flow on the bounding spherical surface.
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Asymptotic Analysis

The leading-order problem describes thermal-inertial oscillation and

is governed by the equations

i2σ0u0(r, θ) + 2ẑ× u0(r, θ) +∇p0(r, θ) = 0, (12)(
∇2 − i2σ0Pr

E

)
Θ0(r, θ) + r · u0(r, θ) = 0, (13)

∇ · u0 = 0, (14)

subject to the boundary conditions

r̂ · u0 = Θ0 = 0 at r = 1.
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The exact analytical solution can be expressible as

p0 =
k∑

i=0

k−i∑
j=0

Ckijr2(i+j)+1σ2i
0 (1− σ2

0)
j sin2j θ cos2i+1 θ,

r̂ · u0 = − i

2

k∑
i=0

k−i∑
j=0

Ckij
[
σ2
0(2i+ 2j + 1)− (2i+ 1)

]
×

[
r2(i+j)σ2i−1

0 (1− σ2
0)

j−1 sin2j θ cos2i+1 θ
]
,

θ̂ · u0 = − i

2

k∑
i=0

k−i∑
j=0

Ckij
[
2jσ2

0 cos
2 θ + (2i+ 1)(1− σ2

0) sin
2 θ
]

×
[
r2(i+j)σ2i−1

0 (1− σ2
0)

j−1 sin2j−1 θ cos2i θ
]
,

ϕ̂ · u0 =
1

2

k∑
i=0

k−i∑
j=0

Ckijr2(i+j)σ2i
0 (1− σ2

0)
j−1 (2j) sin2j−1 θ cos2i+1 θ,
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Asymptotic Analysis

In the exact analytical solution, k = 1, 2, 3, . . . is regarded as a

parameter of the solution and to be determined by the next-order

problem, Ckij is defined as

Ckij =
(−1)i+j [2(k + i+ j) + 1]!!

2j+1(2i+ 1)!!(k − i− j)!i!(j!)2
,

and σ0 is a solution of

k∑
j=0

{
(−1)j [2(2k − j + 1)]!

j![2(k − j)]!(2k − j + 1)!

}
σ
2(k−j)
0 = 0, (15)

which has 2k real distinct solutions within 0 < |σ0| < 1 ( σ0 is also to be

determined by the next-order problem).
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Asymptotic analysis

The next-order problem is described by

2iσ0 (ũ+ û) + 2ẑ× (ũ+ û) +∇ (p̃+ p̂) = RrΘ0 + E∇2 [u0 + ũ]− i2σ1u0,

∇ · (ũ+ û) = 0,

subject to the stress-free boundary condition

r̂ · (ũ+ û) = 0 and r̂×∇×
(
u0 + ũ

r2

)
= 0 at r = 1.

The boundary-layer flow ũ, albeit weak, must be retained such that

(u0 + ũ) satisfies the stress-free boundary condition.
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Asymptotic analysis

The solvability condition yields an expression for the Rayleigh number R:

R = R[u0(k), σ0,E ,Pr ], a lengthy analytical expression.

(16)

The critical Rayleigh number R is determined by minimizing R over a

manifold of u0 with different values of k and σ0 for a given value of

E and Pr.
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Asymptotic analysis: Results

Figure 1: The curve A represents solutions for retrogradely traveling waves

with the azimuthal wavenumber m = 1; the curve B represents axially

symmetric, equatorially antisymmetric, torsional convection ; and the

curve C for progradely traveling waves with m = 1.
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Asymptotic analysis

The leading-order asymptotic solution for the pressure p and the velocity u

of convection is

p = +
3

2

(
1− 2r2 +

5

3
r2 cos2 θ

)
r cos θ cos[(2/

√
5)t],

r̂ · u = −3
√
5

4

(
1− r2

)
cos θ sin[(2/

√
5)t],

θ̂ · u = −3
√
5

4

(
2r2 − 1

)
sin θ sin[(2/

√
5)t],

ϕ̂ · u = −15

8
r2 sin 2θ cos[(2/

√
5)t],

It perhaps represents the simplest analytical solution of thermal

convection in rapidly rotating fluid spheres with 0 < E ≪ 1.
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Asymptotic analysis

(c) (d)

Figure 2: Contours of the axisymmetric azimuthal flow ϕ̂ · u in a meridional

plane at two different oscillation states of torsional convection in rapidly

rotating spheres. Solid contours indicate ϕ̂ · u > 0 while dashed contours

correspond to ϕ̂ · u < 0.
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Nonlinear Properties

• When convective instability is characterized by axially

nonsymmetric, equatorially symmetric and azimuthally traveling

waves such as columnar rolls, the nonlinear convection near the

threshold has the same equatorial symmetry with its properties being

largely predictable based on the characteristics of the onset.

• When convective instability is marked by
axially symmetric and equatorially
antisymmetric oscillation, the equatorial
symmetry of the nonlinear convection must be
broken and it becomes difficult to predict its
nonlinear properties based on the characteristics
of the onset.
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Nonlinear properties: Three Different Solutions
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Figure 3: Branch A for axially axisymmetric torsional oscillatory waves;

Branch B for axially non-axisymmetric and equatorially symmetric, thermal

inertial waves; and Branch C for thermal inertial waves modified by the tor-

sional oscillatory wave.
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Nonlinear properties: Primary Solution

An interesting nonlinear phenomenon of thermal convection in

rotating spheres:

Axially symmetric, equatorially non-symmetric,
latitudinally propagating nonlinear waves.
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Nonlinear properties: Primary Solution

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Contours of ϕ̂ · u in a meridional plane at 12 different instants.
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Nonlinear Properties: Secondary solution

(a) (b) (c) (d)

Figure 5: Contours of (a) ϕ̂ ·u0 and (c) r̂ ·u in the equatorial plane and (b)

ϕ̂ · u and (d) r̂ · u in a meridional plane.
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Nonlinear Properties: Secondary solution

The convective flow is axially asymmetric, equatorially symmetric,

propagates in the eastward (prograde) direction, and its leading-order

solution is given by

p = − 8A
135

(√
10 + 5

)
r sin θ

×
[
5
(√

10− 1
)
r2 cos(2θ) + 3

(√
10− 7

)
r2 + 18

]
e
i[ϕ+(2/3)

(
1−2

√
2/5

)
t]
,

r̂ · u = −4Ai
(
r2 − 1

)
sin θe

i[ϕ+(2/3)
(
1−2

√
2/5

)
t]
,

θ̂ · u =
4A
9

i
[(

4
√
10− 13

)
r2 + 9

]
cos θe

i[ϕ+(2/3)
(
1−2

√
2/5

)
t]
,

ϕ̂ · u = −4A
9

[(
4
√
10 + 5

)
r2 cos(2θ)− 18r2 + 9

]
e
i[ϕ+(2/3)

(
1−2

√
2/5

)
t]
.
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Nonlinear Properties: Tertiary solution

(a) (b) (c)

(d) (e) (f)

Figure 6: Contours of ϕ̂ · u in the equatorial plane.
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Nonlinear properties: Tertiary solution

(a) (b) (c)

(d) (e) (f)

Figure 7: Contours of ϕ̂ · u in the meridional plane.
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An example of the unified asymptotic approach:
Precessing flow in rapidly rotating spheroids

Ω

x

y

z

ϕ

d

τ

>

η

>

z

Ωp

α

(a)

Figure 8: Geometry of a rotating fluid spheroidal cavity of semi-major axis

d and semi-minor axis d
√
1− E2 with spheroidal coordinates (η, ϕ, τ) and

corresponding unit vector (η̂, ϕ̂, τ̂ ).
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Mathematical Equations in the Mantle Frame

Consider a spheroidal cavity of arbitrary eccentricity rotating rapidly

with angular velocity ẑΩ and, at the same time, precesses slowly with

angular velocity Ωp that is fixed in space and inclined at an angle α

(0 < α < π/2) with ẑ. In the mantle frame of reference,

processionally driven flows are governed by:

∂u

∂t
+ u · ∇u+ 2

(
ẑ+ PoΩ̂p

)
× u+∇p

= E∇2u+ Por×
(
Ω̂p × ẑ

)
, (17)

∇ · u = 0, (18)

where the Ekman number, E = ν/Ωr2o, and the Poincaré number,

Po = ±|Ωp|/Ω
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Mathematical Equations in the Mantle Frame

In the mantle frame, the dimensionless precession vector Ω̂p is

time-dependent and is given by

Ω̂p = sinα (x̂ cos t− ŷ sin t) + ẑ cosα, (19)

The precessing flow on the bounding surface, S, of the container is

at rest, which requires

n̂ · u = n̂× u = 0. (20)

The problem will be solved asymptotically for an arbitrarily small but

fixed E with sufficiently small Po and numerically for both weakly

and strongly precessing flows.
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Mathematical Equations in the Mantle Frame

We shall employ oblate spheroidal coordinates (η, ϕ, τ) defined by

x2 = (E2 + η2)(1− τ2) cos2 ϕ,

y2 = (E2 + η2)(1− τ2) sin2 ϕ,

z2 = η2τ2,

where z is at the axis of ẑΩ. The spheroidal polar coordinates (η, ϕ, τ) are

then restricted by

0 ≤ η ≤
√
1− E2, 0 ≤ ϕ ≤ 2π, −1 ≤ τ ≤ +1.

The envelope of the spheroidal cavity is simply described by

η =
√

1− E2.
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Mathematical Equations in the Mantle Frame

In our asymptotic analysis, we shall assume that precessing flows are

weak with a small Poincaré number Po:

∂u

∂t
+

2(1 + Po cosα)√
η2 + E2τ2

(
η̂τ
√
E2 + η2 + τ̂η

√
1− τ2

)
× u+∇P

= E∇2u−
2Po sinα

√
(E2 + η2)(1− τ2)√
η2 + E2τ2

×
(
η̂τ
√
E2 + η2 + τ̂η

√
1− τ2

)
cos(ϕ+ t), (21)

∇ · u = 0, (22)

where P denotes a reduced pressure including all the gradient terms. As

we shall demonstrate later, solutions of the above equations actually

provides a satisfactory quantitative agreement with the fully

nonlinear solutions including the full nonlinear simulation.
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Asymptotic Analysis in the Mantle Frame

The analysis is based on the following physical and mathematical

observations:

• The analytical solution in the limit Po = 0 and E = 0 is available

(Zhang et al., 2004, JFM), providing the necessary framework to

construct the leading-order solution for the interior precessing flow in

the mantle frame.

• Naturally, an asymptotic problem describing the precessing flows

for |Po ≪ 1 and E ≪ 1 may be regarded as a small perturbation to

the leading-order solution at Po = 0 and E = 0, forming a

mathematically tractable asymptotic problem.

• If we treat the Poincaré forcing the same way we treat the

buoyancy force in convection, the asymptotic method used in

convection (Zhang et al. 2007, JFM) can be modified for solving the

precession problem.
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Asymptotic Analysis in the Mantle Frame

Those observations lead to an asymptotic expansion in the mantle

frame:

u =
∑
mnk

Amnk

{
(umnk + ûmnk) +

[
ũmnk +

(
η̂ · ̂̃umnk

)
η̂
]}

eit,

where i =
√
−1, Amnk is the complex coefficients to be determined

and a spheroidal inertial mode umkn satisfies

i2σmnkumnk + 2ẑ× umnk +∇pmnk = 0,

∇ · umnk = 0,

where σmnk is the half-frequency of the mode with |σmnk| < 1,

subject to the inviscid boundary condition η̂ · umnk = 0 on S.
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Asymptotic Analysis in the Mantle Frame

In the asymptotic expansion, viscous action on each inertial mode

umnk induces a thin viscous boundary layer on S with its major

tangential component ũmnk (i.e., r̂ · ũmnk = 0) and its small normal

component n̂ · ̂̃umnk.

By producing the normal mass flux from or sucking the interior fluid

into the thin boundary layer, the viscous effect drives the secondary

interior flow ûmnk and communicates to the interior fluid. It should

be pointed out that the asymptotic expansion may be used to

represent the spatial structure of any physically acceptable flow.

The analytical expressions for umnk and pmnk are given by
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Asymptotic Analysis in the Mantle Frame

η̂ · umnk =
k∑

i=0

k−i∑
j=0

Cmkij

2
√
(η2 + E2τ2)(η2 + E2)

σ2i−1(1− σ2)j−1

×
[
−η2σ(2jσ +mσ +m) + (2i+ 1)(η2 + E2)(1− σ2)

]
×

[
(1− τ2)(η2 + E2)

](m/2+j)
η2iτ2i+1eimϕ,

ϕ̂ · umnk =
k∑

i=0

k−i∑
j=0

Cmkij

2
√
(1− τ2)(η2 + E2)

σ2i(1− σ2)j−1(2j +m+mσ)

×
[
(1− τ2)(η2 + E2)

](m/2+j)
(ητ)2i+1eimϕ,

τ̂ · umnk = i
k∑

i=0

k−i∑
j=0

Cmkij

2
√
(1− τ2)(η2 + E2τ2)

σ2i−1(1− σ2)j−1

×
[
τ2σ(2jσ +mσ +m) + (2i+ 1)(1− τ2)(1− σ2)

]
×

[
(1− τ2)(η2 + E2)

](m/2+j)
η2i+1τ2ieimϕ.
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Asymptotic Analysis in the Mantle Frame

where m ≥ 0, k = 0, 1, 2, . . . and n = 1, 2, . . . , (2k + 1), Cmkij is defined

as

Cmkij =

[
−1

(1− σ2E2)

]i+j
[2(m+ k + i+ j) + 1]!!

2j+1(2i+ 1)!!(k − i− j)!i!j!(m+ j)!
.

Demanding that η̂ · u = 0 at η =
√
1− E2 gives an equation for the

half-frequency σ

k∑
j=0

(−1)j
[2(2k +m− j + 1)]!

[2(k − j) + 1]!j!(2k +m− j + 1)!
[. . . ]

[
(1− E2)σ2

(1− σ2E2)

]k−j

= 0.

Here, for each given k ≥ 0, the 2k + 1 distinct real solutions to can

be arranged according to their size,

0 < |σmnk| < |σmnk| < |σmnk|, . . . , < |σmnk| < . . . ,

with σmnk for the n-th smallest solution and 1 ≤ n ≤ (2k + 1).
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Asymptotic Analysis in the Mantle Frame

Consider first the solution of the thin viscous boundary layer on S,
described by∑

mnk

Amnk

[
iũmnk +

2√
η2 + E2τ2

(
η̂τ
√
E2 + η2 + τ̂η

√
1− τ2

)
× ũmnk

+ η̂

(
∂p̃mnk

∂ξ

)
E−1/2 − ∂2ũmnk

∂ξ2

]
= 0, (23)

∂

∂ξ

(∑
mnk

η̂ · ̂̃umnk

)
= E1/2η̂ · ∇ ×

[
η̂ ×

(∑
mnk

Amnkũmnk

)]
. (24)

Here ξ is a stretched boundary-layer variable ξ for which

η̂ · ∇ = −E−1/2∂/∂ξ and ξ = ∞ defines the outer edge of the thin

boundary layer.
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Asymptotic Analysis in the Mantle Frame

The boundary-layer equation is solved subject to the conditions:[∑
mnk

Amnkũmnk

]
ξ=0

= −

[∑
mnk

Amnkumnk

]
η=

√
1−E2

,

[∑
mnk

Amnk
∂2(τ̂ · ũmnk)

∂ξ2

]
ξ=0

= −
(
1− E2 + E2τ2

)1/2
×

∑
mnk

Amnk

[
i
(
1− E2 + E2τ2

)1/2
τ̂ · umnk + 2τ ϕ̂ · umnk

]
η=

√
1−E2

,[∑
mnk

Amnk
∂2(ϕ̂ · ũmnk)

∂ξ2

]
ξ=0

= −
(
1− E2 + E2τ2

)1/2
×

∑
mnk

Amnk

[
i
(
1− E2 + E2τ2

)1/2
ϕ̂ · umnk − 2τ τ̂ · umnk

]
η=

√
1−E2

,[∑
mnk

Amnkũmnk

]
ξ=∞

=

[∑
mnk

Amnk
∂2ũmnk

∂ξ2

]
η=

√
1−E2

= 0.
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Asymptotic Analysis in the Mantle Frame

The fourth-order equation can be readily solved but coefficients

Amnk remain undetermined.

τ̂ · ũ =
∑
mnk

Amnk

2

[
eα

+ξ
(
iϕ̂− τ̂

)
· umnk − eα

−ξ
(
iϕ̂+ τ̂

)
· umnk

]
η=

√
1−E2

ϕ̂ · ũ =
∑
mnk

Amnk

2

[
eα

−ξ
(
iτ̂ − ϕ̂

)
· umnk − eα

+ξ
(
ϕ̂+ iτ̂

)
· umnk

]
η=

√
1−E2

,

where α+ and α− are very complicated functions of τ and the

coefficients Amnk remain undetermined.
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Asymptotic Analysis in the Mantle Frame

The solvability condition for the interior problem:

i (1− 2σmnk)Amnk

∫
V

|umnk|2 dV

+ E1/2
∑

m′n′k′

Am′n′k′

{∫
S

[p∗mnk]η=
√
1−E2 η̂ · ũ

}
dS

= Po

∫
V

u∗
mnk ·

[
r×

(
Ω̂p × ẑ

)]
dV

− 2Po cosα
∑

m′n′k′

Am′n′k′

∫
V

u∗
mnk × (ẑ× um′n′k′) dV,

where
∫
S
denotes the surface integral over the envelope of a spheroidal

cavity,
∫
V

for the volume integral over the spheroid.
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Asymptotic Analysis in the Mantle Frame

Here p∗mnk denotes the complex conjugate of pmnk and the indices,

m,n and k, take all permissable values. By performing direct

integration, we find that∫
V

u∗
mnk ·

[
r×

(
Ω̂p × ẑ

)]
dV = (i4π sinα)Pk = (i4π sinα)

×
k∑

i=0

k−i∑
j=0

(−1)i+jσ2i−1
1nk (1− σ2

1nk)
j [2(i+ j + k) + 3]!!(1− E2)i+1/2

(k − i− j)!i!j!(2i+ 2j + 5)!!(1− E2σ2
1nk)

i+j
.

With several page of the analysis, we can prove that Pk = 0 for all k ≥ 1.

It implies that the solvability system reduces to

Amnk = 0, except for m = 1, n = 1, k = 0.
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Asymptotic Analysis in the Mantle Frame

The non-zero coefficient A110 is then given by

−
(

iE2

2− E2

)
A110

∫
V

|u110|2 dV +A110

{∫
S

[p∗110]η=
√
1−E2 η̂ · ̂̃u110 dS

}
= Po

i4π sinα

5
(1− E2)1/2(2− E2) +

(
i2Po cosαA110

2− E2

)∫
V

|u110|2 dV, (25)

which can be solved to determine A110 via some lengthy integrations

if η̂ · ̂̃u110 is known.
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Asymptotic Analysis in the Mantle Frame

It can be shown that the mass flux takes the form

η̂ · ̂̃u110 =
A110e

iϕ

(1− E2 + τ2E2)1/2

{ ∂

∂τ

[
(1− E2 + τ2E2)1/2(1− τ2)1/2S1(τ)

]
+

i(1− E2 + τ2E2)S2(τ)

(1− τ2)1/2

}
where

S1(τ) =
3
√
2(2− E2)

16(1− E2 + τ2E2)1/4
√
1− E2

{ i[τ − (1− E2 + τ2E2)1/2

|(1− E2 + τ2E2)1/2 + 2τ |1/2

+
[τ − (1− E2 + τ2E2)1/2[(1− E2 + τ2E2)1/2 + 2τ ]

|(1− E2 + τ2E2)1/2 + 2τ |3/2

+
i[τ + (1− E2 + τ2E2)1/2

|(1− E2 + τ2E2)1/2 − 2τ |1/2

+
[τ + (1− E2 + τ2E2)1/2[(1− E2 + τ2E2)1/2 − 2τ ]

|(1− E2 + τ2E2)1/2 − 2τ |3/2
, ...

+ 42



+ +

Asymptotic Analysis in the Mantle Frame: Solution

u =

[
i(15

√
2/4)E1/2Ir − E2(2− E2)− (15

√
2/4)E1/2Ii − 2Po(2− E2) cosα

][
E2(2− E2) + (15

√
2/4)E1/2Ii + 2Po(2− E2) cosα

]2
+ E(15

√
2I2

r /4)
2

×
[
Po(2− E2) sinα

] {[2η√η2 + E2(1− E2 + τ2E2)√
η2 + E2τ2

]
τ̂

+ i(1− E2)1/2
[
(τ −

√
1− E2 + τ2E2)eα

+E−1/2(
√
1−E2−η)

− (τ +
√

1− E2 + τ2E2)eα
−E−1/2(

√
1−E2−η)

]
τ̂

− 2ητ ϕ̂− i(1− E2)1/2
[
(τ −

√
1− E2 + τ2E2)eα

+E−1/2(
√
1−E2−η)

+ (τ +
√

1− E2 + τ2E2)eα
−E−1/2(

√
1−E2−η)

]
ϕ̂

+

[
2iτE2

√
1− τ2(1− E2 − η2)√

η2 + E2τ2

]
η̂
}
ei(ϕ+t). (26)
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Asymptotic Analysis in the Mantle Frame

In the expression,

Ir = −
∫ +1

−1

(τ −
√
1− E2 + τ2E2)(2τ +

√
1− E2 + E2τ2)

× (1− E2 + τ2E2)1/4[(1− 2τ2) + τ
√
1− E2 + E2τ2)

|2τ +
√
η2 + E2|3/2

dτ

Ii = −
∫ +1

−1

(τ −
√
1− E2 + τ2E2)(1− E2 + τ2E2)1/4

× (1− 2τ2) + τ
√
1− E2 + E2τ2)

|2τ +
√
η2 + E2|1/2

dτ,

For measuring the amplitude of the precessing flow, we introduce the

kinetic energies of the precessing flows per volume

Ekin =
1

2

(
1

V

)∫
V

|u|2 dV.
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Asymptotic Explicit Solution in the Mantle Frame:

u =

[
i4E1/2g1(E)− E2(2− E2)− 4E1/2g2(E)− 2Po(2− E2) cosα

][
E2(2− E2) + 4E1/2g2(E) + 2Po(2− E2) cosα

]2
+ 16Eg21(E)

×
[
Po(2− E2) sinα

] {[2η√η2 + E2(1− E2 + τ2E2)√
η2 + E2τ2

]
τ̂

+ i(1− E2)1/2
[
(τ −

√
1− E2 + τ2E2)eα

+E−1/2(
√
1−E2−η)

− (τ +
√
1− E2 + τ2E2)eα

−E−1/2(
√
1−E2−η)

]
τ̂

− 2ητ ϕ̂− i(1− E2)1/2
[
(τ −

√
1− E2 + τ2E2)eα

+E−1/2(
√
1−E2−η)

+ (τ +
√
1− E2 + τ2E2)eα

−E−1/2(
√
1−E2−η)

]
ϕ̂

+

[
2iτE2

√
1− τ2(1− E2 − η2)√

η2 + E2τ2

]
η̂
}
ei(ϕ+t),
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Asymptotic Explicit Solution in the Mantle Frame

In the analytical expression,

g1(E) =
3

56

(
19

√
2 + 9

√
6
)
− E2

308

(
229

√
2 + 9

√
6
)
+O(E4)

g2(E) =
3

56

(
−19

√
2 + 9

√
6
)
− E2

308

(
229

√
2− 9

√
6
)
+O(E4).

The explicit formula for the kinetic energy of the precessing flow is

Ekin =
(2/5)(Po sinα)2(2− E2)3(1− E2)[

E2(2− E2) + 4E1/2g2(E) + 2Po(2− E2) cosα
]2

+ 16Eg21(E)
.(27)

This explicit analytical formulas can be readily/directly used for

planets.
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Asymptotics vs. Numerics in the Mantle Frame
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Figure 9: Kinetic energies, Ekin, of the retrogradely precessing flow as a

function of E for E = 10−4, α = 23.5o and Po = −10−2.
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Remarks

• A unified asymptotic approach to the theory of rotating flows is

based on the existence of mathematically explicit and relatively

simple/complete analytical solutions of a rotating system.

• A unified asymptotic approach to the theory of rotating flows can

be readily extended to the compressible fluid in rapidly rotating

systems.

• Reference: Zhang, K. and X. Liao (2017) THEORY AND

MODELING OF ROTATING FLUIDS, (19 Chapters, ∼ 520 pages,

ISBN 978-0-521-85009-4), a Cambridge University Monograph on

Mechanics, Cambridge University Press.
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