Lecture 4: disk-planet interactions and planetary migration

Suggested references:

- Baruteau et al. 2016, Formation, Orbital and Internal Evolutions of Young Planetary Systems arxiv.org/abs/1604.07558
- Baruteau et al. 2014, Planet-Disc Interactions and Early Evolution of Planetary Systems arxiv.org/abs/1312.4293
C. BARUTEAU, WITGAF Summer School 2019 - clement.baruteau@irap.omp.eu

Planet formation and orbital evelution

planet-disc interactions

planet formation
change planets semi-major axes (planetary migration)
damp eccentricities and inclinations
core accretion?

Planet formation and orbital evelution

planet-disc interactions

planet formation
change planets semi-major axes (planetary migration)
damp eccentricities and inclinations
core accretion?

planet-planet interactions

also change semi-major axes!
pump eccentricities and inclinations

Planet formation and orbital evelution

disc dispersal . interactions with the central star (tides, stellar evolution) or with nearby stars
. planet-planet interactions
. planets-debris disc interactions

Disc migration oflow-mass planets

(typically up 10 Earth masses)

\leftarrow gas density perturbation by a 5 Earth-mass planet

Disc migration offow-mass planets

(typically up 10 Earth masses)

Disc migration offow-mass planets

(typically up -10 Earth masses)

Disc migration oflow-mass planets

(typically up -10 Earth masses)

The total wake torque is (generally) negative and favors inward migration

Disc migration oflow-mass planets

(typically up - 10 Earth masses)

Disc migration oflow-mass planets

(typically up - 10 Earth masses)

Focus on the ol waket wakes

- They are the superposition of spiral density waves emitted at Lindblad resonances
\% linear problem: Lindblad resonances $=$ where the gas azimuthal velocity relative to the planet matches \pm the phase velocity of acoustic waves in the azimuthal direction

$$
v_{\varphi}-v_{\mathrm{p}}= \pm \frac{\omega}{k_{\varphi}} \rightarrow \quad \Omega-\Omega_{\mathrm{p}}= \pm \frac{\omega}{m}
$$

For a gas disk without self-gravity, $\omega^{2}=\kappa^{2}+m^{2} c_{\mathrm{s}}^{2} / R^{2}$

horizontal epicyclic frequency $\kappa \approx \Omega$

- the $2 / 3$ power implies that outer resonances lie slightly closer to the planet than inner resonances
- at large $\mathrm{m}, \mathrm{v}_{\text {phase }} \rightarrow \mathrm{c}_{\mathrm{s}}$ and Lindlad resonances pile up at $\pm 2 \mathrm{H} / 3$ around the planet
- 2D + WKB approximation, the wave equation reduces to a Schrödinger-like equation for every m:
$\mathrm{f}(\mathrm{r}) \equiv$ gas perturbed enthalpy,
$\frac{d^{2} f}{d r^{2}}+V(r) f(r)=S(r)$

Focus on the olanet wakes

- They are the superposition of spiral density waves emitted at Lindblad resonances
\% linear problem: Lindblad resonances $=$ where the gas azimuthal velocity relative to the planet matches \pm the phase velocity of acoustic waves in the azimuthal direction

For a gas disk without self-gravity, $\left.\omega^{2}=\kappa^{2}+m^{2} c_{\mathrm{s}}^{2} / R^{2}\right\rfloor$

$$
] \Rightarrow \underbrace{r_{\mathrm{LR}}=r_{\mathrm{p}}\left(1 \pm \sqrt{h^{2}+m^{-2}}\right)^{2 / 3}}_{\text {disk's aspect ratio }}
$$

$$
\text { horizontal epicyclic frequency } \kappa \approx \Omega
$$

- the $2 / 3$ power implies that outer resonances lie slightly closer to the planet than inner resonances
- at large $\mathrm{m}, \mathrm{v}_{\text {phase }} \rightarrow \mathrm{c}_{\mathrm{s}}$ and Lindlad resonances pile up at $\pm 2 \mathrm{H} / 3$ around the planet
- 2D + WKB approximation, the wave equation reduces to a Schrödinger-like equation for every m:
- the location of Lindblad resonances depends on whatever changes Ω, Ω_{p} or the waves dispersion relation, like the disk's self-gravity, magnetic field...

Focus on the olanet wakes

- They are the superposition of spiral density waves emitted at Lindblad resonances
* linear problem: Lindblad resonances = where the gas azimuthal velocity relative to the planet matches \pm the phase velocity of acoustic waves in the azimuthal direction

For a gas disk without self-gravity, $\left.\omega^{2}=\kappa^{2}+m^{2} c_{\mathrm{s}}^{2} / R^{2}\right\rfloor$

- the $2 / 3$ power implies that outer resonances lie slightly closer to the planet than inner resonances
- at large $\mathrm{m}, \mathrm{V}_{\text {phase }} \rightarrow \mathrm{c}_{\mathrm{s}}$ and Lindlad resonances pile up at $\pm 2 \mathrm{H} / 3$ around the planet
- 2D + WKB approximation, the wave equation reduces to a Schrödinger-like equation for every m:
- the location of Lindblad resonances depends on whatever changes $\Omega, \Omega_{\mathrm{p}}$ or the waves dispersion relation, like the disk's self-gravity, magnetic field...
- waves launched at Lindblad resonances interfere constructively into an one-armed spiral wave, called the planet's wake, which co-rotates with the planet

Ogilvie \& Lubow 02

Focus on the olat wakes

Thanks for yor attentions

