
Lecture 4: disk-planet interactions and planetary migration
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change planets semi-major axes 
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Planet formation and orbital evolution

disc dispersal . interactions with the central star (tides, stellar evolution) or 
with nearby stars

. planet-planet interactions

. planets-debris disc interactions 

(after 1-10 Myr)
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Torque on planet by inner wake 
∼ rp × Fϕ > 0

→ moves planet further out 
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Torque on planet by outer wake 
∼ rp × Fϕ < 0

→ moves planet further in! 
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✤ linear problem: Lindblad resonances = where the gas azimuthal velocity relative to 
the planet matches ±the phase velocity of acoustic waves in the azimuthal direction

‣ at large m, vphase → cs and Lindlad resonances pile up at ± 2H/3 around the planet 

‣ the 2/3 power implies that outer resonances lie slightly closer to the planet than inner resonances

azimuthal wavevector = m/R

Ω− Ωp = ±
ω

m

→

For a gas disk without self-gravity, ω2
= κ

2
+m2c2

s
/R2

horizontal epicyclic frequencyκ ≈ Ω

rLR = rp

⇣

1±

p

h2 +m−2

⌘2/3
⇒

Dopper-shifted wave frequency

vϕ − vp = ±
ω

kϕ
‣  

disk’s aspect ratio

Disc migration of low-mass planetsFocus on the planet wakes

They are the superposition of spiral density waves emitted at Lindblad resonances

‣ 2D + WKB approximation, the wave equation reduces to a Schrödinger-like equation for every m:

d2f

dr2
+ V (r)f(r) = S(r)

f(r)  ≡ gas perturbed enthalpy,
S(r) = forcing term due to planet’s potential
V(r) defines regions of wave propagation:

V(r) > 0: waves can propagate
V(r) < 0: waves are evanescent
V(r) = 0 defines resonances location Muto+ 08
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✤ linear problem: Lindblad resonances = where the gas azimuthal velocity relative to 
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Disc migration of low-mass planetsFocus on the planet wakes

They are the superposition of spiral density waves emitted at Lindblad resonances

‣ 2D + WKB approximation, the wave equation reduces to a Schrödinger-like equation for every m:

‣ the location of Lindblad resonances depends on whatever changes #, #p or the waves 
dispersion relation, like the disk’s self-gravity, magnetic field… 
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Disc migration of low-mass planetsFocus on the planet wakes

They are the superposition of spiral density waves emitted at Lindblad resonances

‣ 2D + WKB approximation, the wave equation reduces to a Schrödinger-like equation for every m:

‣ the location of Lindblad resonances depends on whatever changes #, #p or the waves 
dispersion relation, like the disk’s self-gravity, magnetic field… 

‣ waves launched at Lindblad resonances interfere constructively into an one-armed spiral wave, 
called the planet’s wake, which co-rotates with the planet Ogilvie & Lubow 02
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Disc migration of low-mass planetsFocus on the planet wakes

waveform based on linear theory
(Ogilvie & Lubow 02)
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Disc migration of low-mass planetsThanks for your attention!


