Lecture 2: Gas dynamics in protoplanetary disks

Suggested references:

- Armitage 2011, Dynamics of protoplanetary disks <u>arxiv.org/abs/1011.1496</u>
- Turner et al. 2014, Transport and Accretion in Planet-Forming Disks arxiv.org/abs/1401.7306
- Fromang & Lesur 2017, Angular momentum transport in accretion disks: a hydrodynamical perspective arxiv.org/abs/1705.03319

C. BARUTEAU, WITGAF Summer School 2019 — <u>clement.baruteau@irap.omp.eu</u>

In the inertial frame centred on the star:

 $-\frac{GM_{\star}}{r^2}\mathbf{e_r} + r\Omega^2\mathbf{e_r}$

comes about as we're using a <u>rotating coordinate system</u>

In the inertial frame centred on the star:

(Keplerian speed)

$$-\frac{GM_{\star}}{d^{2}}\sin\alpha\mathbf{e}_{\mathbf{z}} - \frac{1}{\rho}\frac{\partial p}{\partial z}\mathbf{e}_{\mathbf{z}} = \mathbf{0}$$

discard again self-gravity, B fields and assume the disk is thin ($z \ll R$):

$$\rightarrow \frac{1}{\rho} \frac{\partial p}{\partial z} \approx -\frac{GM_{\star}}{r^3} \times z = -\Omega_{\rm K}^2 z$$

Now recall that $p = \rho c_s^2$ with both ρ and c_s (hence temperature) functions of r and z, a priori

Progress can be made by assuming the disk is **vertically isothermal** which is not too bad an assumption near the disk midplane, where most of the mass is contained $\rightarrow C_s = C_s(r)$

We obtain:
$$\frac{c_{\rm s}^2(r)}{\rho(r,z)}\frac{\partial\rho}{\partial z} = -\Omega_{\rm K}^2 z \rightarrow \rho(r,z) = A(r)\exp\left(-\frac{z^2\Omega_{\rm K}^2}{2c_{\rm s}^2}\right) {\rm E}_{\rm K}^2$$

Finally,
$$ho(r,z) =
ho(r,z=0) \exp\left(-rac{z^2}{2H^2}
ight)$$

with $H = c_{\rm s}/\Omega_{\rm K}$ the disk's pressure scale height

$$\rho(r,z) = \rho(r,z=0) \exp\left(-\frac{z^2}{2H^2}\right)$$

with $H=c_{
m s}/\Omega_{
m K}$

• We note that $H = h \times r$ with $h = c_s/v_K$ the disk's aspect ratio

 \rightarrow H(r) increases faster than linearly with r: disks are said to be **flared** which is thought to explain the bowl shape of edge-on disks (though what we see is dust and not gas...)

• Note also that the gas surface density
$$\Sigma(r) = \int_{-\infty}^{\infty} \rho(r, z) dz$$

 $\rightarrow \rho(r, z = 0) = \frac{\Sigma}{\sqrt{2\pi}H} \sim \frac{\Sigma}{2H}$

typical numbers at r=1au: $H/r \sim 0.03, \Sigma \sim 10^3 \,\mathrm{g \, cm^{-2}}, \rho \sim 10^{-9} \,\mathrm{g \, cm^{-3}}$

Burrows+ 1996 26

• The disk **cannot be** in **strict centrifugal balance**, otherwise gas will stay on stable circular orbits forever and will never be accreted onto the central star!

differential rotation implies **viscous friction** forces between neighboring rings of gas:

- ring A moves faster than ring B: friction between the two rings will try to slow down A and speed up B
 - → **angular momentum** is **transferred** from A to B

specific angular momentum for a Keplerian disk:

$$l = r v_{\varphi} = r^2 \Omega_{\rm K} = \sqrt{G M_{\star} r}$$

- so, if ring A loses angular momentum, but has to remain on a Keplerian orbit, it must move inward! Ring B then moves outward, unless it has friction too with a ring C (which has friction with another ring D, etc...)
- * in brief: through radial transport by viscosity, the inner disk falls in, the outer disk expands

- The disk **cannot be** in **strict centrifugal balance**, otherwise gas will stay on stable circular orbits forever and will never be accreted onto the central star!
 - **differential rotation** implies **viscous friction** forces between neighboring rings of gas
 - But what is the molecular viscosity in protoplanetary disks?

From gas kinetic theory, we know that the gas kinematic viscosity is $\nu \sim \lambda c_s$ with the **mean-free path** of the gas molecules $\lambda \sim \frac{1}{n\sigma} = \frac{\mu m_p}{\rho\sigma}$ $\rho \sim \Sigma/2H$ cross section ~ π x diameter²

Plugging in typical numbers at 1 au, we find $v \sim 10^2 \text{ m}^2 \text{ s}^{-1} \dots$

- ... so that the **viscous timescale** at R=1 au is $\sim R^2/\nu \sim 3x10^{12}$ yr! \gg disks lifetime!
- → molecular viscosity cannot explain accretion in protoplanetary disks!
- ★ Define **Reynolds number** with fluctuating velocity scale $\sim c_s$ and corresponding length scale $\sim H$ at 1 au, Re = $c_s H/v \sim 10^{10}! \rightarrow$ protoplanetary disks are likely turbulent

question is: via linear or non-linear instabilities?

• The disk **cannot be** in **strict centrifugal balance**, otherwise gas will stay on stable circular orbits forever and will never be accreted onto the central star!

turbulent (radial) transport of angular momentum due to MHD **instabilities**

→ alpha disk model: $\nu = \alpha c_{\rm s} H$ with $\alpha < 1$

Shakura & Sunyaev 73

interpretation: viscosity is due to **turbulent eddies** with **mean free path** \leq **H** and **speed** \leq **c**_{**S**}

 \rightarrow to explain disks lifetime and measured (stellar) accretion rates, we need $\alpha \sim [10^{-3} - 10^{-2}]$

many instabilities have been investigated over the last decades, in this lecture we will only go through some of them!

• The disk **cannot be** in **strict centrifugal balance**, otherwise gas will stay on stable circular orbits forever and will never be accreted onto the central star!

turbulent (radial) transport of angular momentum due to MHD **instabilities**

vertical transport (extraction) of angular momentum by **magneto-centrifugal winds**

→ vertical magnetic field exerts a torque on the disk surface which implies the entire disk surface falls in (not a viscous diffusion process!) e.g., Blandford & Payne 82

• Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$ Balbus & Hawley 91, Balbus 03

• Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$ Balbus & Hawley 91, Balbus 03

• Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$ Balbus & Hawley 91, Balbus 03

B field line

 $\mathbf{e_r}$

Α

protoplanetary disk

• Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$ Balbus & Hawley 91, Balbus 03

B field line

 $\mathbf{e_r}$

Α

 \rightarrow B moves further out! ($j = rv_{\varphi} = \sqrt{GM_{\star}r}$)

protoplanetary disk

 Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$

Balbus & Hawley 91, Balbus 03

 $|B|^2/2\mu_0 \lesssim \rho c_{\rm s}^2$

 \rightarrow the disk reaches a quasi steadystate with **turbulent** mass **accretion** rates in fair agreement with observations ($\alpha \sim [10^{-3}-10^{-2}]$)

Gas Mach number (r.m.s. turbulent velocity in units of the local sound speed). Disk extends from R=0.5 to 1.5 AU, and the r.m.s. turbulent velocity goes from ~1 to ~1000 m/s Flock+ 2013

• Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$ Balbus & Hawley 91, Balbus 03

protoplanetary disks are in fact **poorly** ionized! ($n_e / n < 10^{-13}$)

• Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$ Balbus & Hawley 91, Balbus 03

protoplanetary disks are in fact **poorly** ionized! ($n_e / n < 10^{-13}$)

→ Ohmic diffusion (electrons-neutrals collisions) makes a large fraction of the bulk disk magnetically inactive

→ layered accretion

Gammie 96

• Linear instability arising in disks dynamically coupled to a weak magnetic field if $\partial \Omega^2 / \partial R < 0$ Balbus & Hawley 91, Balbus 03

protoplanetary disks are in fact **poorly** ionized! ($n_e / n < 10^{-13}$)

- \rightarrow Ambipolar diffusion (ions-neutrals collisions) largely quenches MRI in the disk's surface layers, and partly in its outer parts
- → Wind-driven accretion if a vertical B field threads the disk
- → very active field of research! Talk by **G. Lesur** next week

Bai 13, Simon+ 13...

Magneto-rotational instability (MRI): take away

• Though it is a potentially powerful source of accretion, **MHD turbulence** due to MRI is **likely absent** in large (1-30 AU) parts of protoplanetary disks

This is overall consistent with observations of the (small!) non-thermal broadening of molecular gas lines (e.g., CO gas) in disks

Magneto-rotational instability (MRI): take away

- Though it is a potentially powerful source of accretion, **MHD turbulence** due to MRI is **likely absent** in large (1-30 AU) parts of protoplanetary disks
- This is overall consistent with observations of the (small!) non-thermal broadening of molecular gas lines (e.g., CO gas) in disks

→ what drives accretion in the bulk of protoplanetary disks? Magnetic winds? Turbulence due to hydrodynamic instabilities?

→ implications on models of planet formation and evolution

- **Linear** instability driven by a **radial extremum** in the quantity $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)^2$ with $\omega_z = (\nabla \times u) \cdot \hat{z}$ the gas vorticity Lovelace+ 99, Li+ 00, 01...

adiabatic index

- Disk analogue of the barotropic instability (cf. talks by P. Read and J. Park yesterday)
- Dispersion relation *analogous* to that of **Rossby waves** in **planetary atmospheres**

$$\widetilde{\omega} = -\frac{2\kappa^2}{\kappa^2 + |k|^2 c_{\rm s}^2} \times \frac{mc_{\rm s}^2}{r\Sigma} \frac{d\mathcal{L}}{dr} \qquad \vec{k} = (k_r, m/r)^T \qquad \text{Méheut+ 13}$$

 κ is the radial epicyclic frequency: $\kappa^2 = \frac{1}{R^3} \frac{dj^2}{dR} \equiv \Omega^2$

- **Linear** instability driven by a **radial extremum** in the quantity with $\omega_z = (\nabla \times u) \cdot \hat{z}$ the gas vorticity **Lovelace+ 99, Li+ 00, 01...** $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\sum_{i=1}^{n} \frac{1}{2\omega_z} \right)$
- Disk analogue of the barotropic instability (cf. talks by P. Read and J. Park yesterday)
- Dispersion relation *analogous* to that of **Rossby waves** in **planetary atmospheres**

$$\widetilde{\omega} = -\frac{2\Omega^2}{\Omega^2 + |k|^2 c_{\rm s}^2} \times \frac{mc_{\rm s}^2}{r\Sigma} \frac{d\mathcal{L}}{dr} \qquad \vec{k} = (k_r, m/r)^T \qquad \text{Méheut+ 13}$$

- A Rossby wave propagates on each side of the *L* extremum, with fluxes of energy E (or angular momentum) of opposite sign
- Emission of spiral density waves (wakes)
 beyond so-called Lindblad resonances, where

 $\widetilde{\omega}^2 = \Omega^2 + |k|^2 c_{\rm s}^2$

Instability growth related to energy exchange between the Rossby waves — growth rate is sensitive to sound speed, how peaked the *L* extremum is, viscosity, inclusion of self-gravity...

adiabatic index

- **Linear** instability driven by a **radial extremum** in the quantity $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)^2$ with $\omega_z = (\nabla \times u) \cdot \hat{z}$ the gas vorticity **Lovelaged 99** Lie 00 of ۲ with $\omega_z = (\nabla \times u) \cdot \hat{z}$ the gas vorticity Lovelace+ 99, Li+ 00, 01...
- $2/\gamma$

- Disk analogue of the barotropic instability
- Saturates into few **anticyclonic vortices** that tend to **merge** in time ۲

- **Linear** instability driven by a **radial extremum** in the quantity with $\omega_z = (\nabla \times u) \cdot \hat{z}$ the gas vorticity **Lovelace+ 99, Li+ 00, 01...** $\mathcal{L} = \frac{\Sigma}{2\omega_z}$
- Disk analogue of the barotropic instability
- Saturates into few **anticyclonic vortices** that tend to **merge** in time
- RWI in protoplanetary disks may be **triggered** at:
 - → the edges between magnetically active and dead regions

Varnière & Tagger 06, Faure+ 14, Lyra+15...

Vortex between a magnetically dead inner region and active outer region

- **Linear** instability driven by a **radial extremum** in the quantity with $\omega_z = (\nabla \times u) \cdot \hat{z}$ the gas vorticity **Lovelace+ 99, Li+ 00, 01...** $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)$
- Disk analogue of the barotropic instability
- Saturates into few **anticyclonic vortices** that tend to **merge** in time
- RWI in protoplanetary disks may be **triggered** at:

• **Linear** instability driven by a **radial extremum** in the quantity with $\omega_z = (\nabla \times u) \cdot \hat{z}$ the gas vorticity **Lovelace+ 99, Li+ 00, 01...**

 $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)$

- Disk analogue of the barotropic instability
- Saturates into few **anticyclonic vortices** that tend to **merge** in time
- RWI in protoplanetary disks may be **triggered** at the edges between magnetically active and dead regions, or at the edges of planet gaps
- Evolution of vortices sensitive to the presence of other sources of **turbulence** in the disk (often modelled as a **viscosity**), of **dust** trapped in the vortices etc.
- RWI-induced vortices often invoked to explain the asymmetric continuum emission observed in disks at radio λ (see lecture 3)

Temperature-related instabilities

- <u>Preamble</u>: *sufficient* condition for a non-magnetized sheared flow to be stable against infinitesimal, axisymmetric, adiabatic perturbations is given by the Solberg-Høiland criterion:
 - $\frac{1}{R^3}\frac{\partial j^2}{\partial R} \frac{1}{C_{\rm p}\rho}\nabla P \cdot \nabla S > 0 \quad [1] \qquad \qquad \frac{\partial P}{\partial z}\left(\frac{\partial j^2}{\partial R}\frac{\partial S}{\partial z} \frac{\partial j^2}{\partial z}\frac{\partial S}{\partial R}\right) < 0 \quad [2]$

with $j = R^2 \Omega$ the specific angular momentum and $S = S_0 + C_v \ln\left(\frac{P}{\rho^{\gamma}}\right)$ the specific entropy

* buoyancy frequencies: $N_i^2 = -\frac{1}{\gamma\rho} \frac{\partial P}{\partial i} \frac{\partial}{\partial i} \left(\ln \frac{P}{\rho^{\gamma}} \right)$ i={R,z}

* in protoplanetary disks: $\Omega \approx \Omega_{\rm K}(R)$ $|N_R^2| \sim h^2 \Omega_{\rm K}^2$ $|N_z^2| \ll |N_R^2|$

→ [1]: $\Omega_{\rm K}^2 + N_R^2 > 0$ always guaranteed, even when $N_R^2 < 0$ → [2]: $N_z^2 > 0$ also verified, even where the disk surface is hot

 Protoplanetary disks should thus be linearly stable against *adiabatic* perturbations. But, should disk perturbations behave adiabatically?

Temperature-related instabilities

- <u>Preamble</u>: *sufficient* condition for a non-magnetized sheared flow to be stable against infinitesimal, axisymmetric, adiabatic perturbations is given by the Solberg-Høiland criterion
- Protoplanetary disks should thus be linearly stable against *adiabatic* perturbations. But, should disk perturbations behave adiabatically?

→ key role of thermal diffusion timescale

diffusion timescale
over length scale H

$$\tau_{\rm diff} \Omega \approx 3 \times \left(\frac{\kappa}{1\,{\rm cm}^2\,{\rm g}^{-1}}\right) \left(\frac{h}{0.06}\right)^2 \left(\frac{R}{20\,{\rm au}}\right)^{-3.5}$$
 Nelson+ 13

→ very short diffusion timescales at large R!

• Linear instability in 3D axisymmetric disks driven by vertical shear $(\partial \Omega / \partial z \neq 0)$ and rapid thermal diffusion Urpin & Branderburg 98, Nelson+ 13, Barker & Latter 15...

vertical shear due to radial stratification
 cf. thermal wind equation:

$$R\frac{\partial\Omega^2}{\partial z} = -\mathbf{e}_{\varphi} \cdot \frac{\nabla\rho \times \nabla P}{\rho^2} = \frac{\partial T}{\partial R}\frac{\partial S}{\partial z} - \frac{\partial T}{\partial z}\frac{\partial S}{\partial R}$$

Both conditions allow to violate Solberg-Høiland's second stability criterion

Linear instability in **3D** axisymmetric disks driven by vertical shear $(\partial \Omega / \partial z \neq 0)$ ۲ and rapid thermal diffusion Urpin & Branderburg 98, Nelson+ 13, Barker & Latter 15...

vertical shear due to radial stratification

t due to radial stratification cf. thermal wind equation: $R\frac{\partial\Omega^2}{\partial z} = -\mathbf{e}_{\varphi} \cdot \frac{\nabla\rho \times \nabla P}{\rho^2} = \frac{\partial T}{\partial R}\frac{\partial S}{\partial z} - \frac{\partial T}{\partial z}\frac{\partial S}{\partial R}$

- Both conditions allow to violate Solberg-Høiland's second stability criterion ۲
- Disk analogue of the Goldreich-Schubert-Fricke double diffusive instability ۲ in stars, and of the baroclinic instability in geophysics
 - Talk by **A. Barker** next week

• Linear instability in 3D axisymmetric disks driven by vertical shear $(\partial \Omega / \partial z \neq 0)$ and rapid thermal diffusion

Z.

vertical shear due to radial stratificatio
 cf. thermal wind equation

- Both conditions allow to violate Sol
- Disk analogue of the Goldreich-Sch in stars, and of the baroclinic instat
 - Talk by **A. Barker** next week
 - Analogy with inertial modes in a differentially rotating spherical shell with ∂Ω/∂z≠0?

Baruteau & Rieutord 13 (J. Fluid Mech.)

(analogous to **IGWs** propagating towards a critical level, as we've heard in C. Staquet's and T. Rogers' talks)

• Linear instability in 3D axisymmetric disks driven by vertical shear $(\partial \Omega / \partial z \neq 0)$ and rapid thermal diffusion

Z.

vertical shear due to radial stratificatio
 cf. thermal wind equation

- Both conditions allow to violate Sol
- Disk analogue of the Goldreich-Sch in stars, and of the baroclinic instat
 - Talk by **A. Barker** next week
 - Analogy with inertial modes in a differentially rotating spherical shell with ∂Ω/∂z≠0?

Baruteau & Rieutord 13 (J. Fluid Mech.)

• Linear instability in 3D axisymmetric disks driven by vertical shear $(\partial \Omega / \partial z \neq 0)$ and rapid thermal diffusion Urpin & Branderburg 98, Nelson+ 13, Barker & Latter 15...

vertical shear due to radial stratification
 cf. thermal wind equation:

$$R\frac{\partial\Omega^2}{\partial z} = -\mathbf{e}_{\varphi} \cdot \frac{\nabla\rho \times \nabla P}{\rho^2} = \frac{\partial T}{\partial R}\frac{\partial S}{\partial z} - \frac{\partial T}{\partial z}\frac{\partial S}{\partial R}$$

- Both conditions allow to violate Solberg-Høiland's second stability criterion
- Disk analogue of the **Goldreich-Schubert-Fricke** double diffusive **instability** in stars, and of the **baroclinic instability** in geophysics

Linear instability in **3D** axisymmetric disks driven by vertical shear $(\partial \Omega / \partial z \neq 0)$ ۲ and rapid thermal diffusion Urpin & Branderburg 98, Nelson+ 13, Barker & Latter 15...

vertical shear due to radial stratification

t due to **radial stratification** cf. **thermal wind** equation: $R\frac{\partial\Omega^2}{\partial z} = -\mathbf{e}_{\varphi} \cdot \frac{\nabla\rho \times \nabla P}{\rho^2} = \frac{\partial T}{\partial R}\frac{\partial S}{\partial z} - \frac{\partial T}{\partial z}\frac{\partial S}{\partial R}$

- Both conditions allow to violate Solberg-Høiland's second stability criterion ۲
- Disk analogue of the Goldreich-Schubert-Fricke double diffusive instability ۲ in stars, and of the baroclinic instability in geophysics
 - Talk by **A. Barker** next week
- **Inertial** waves destabilized by z-shear
- Moderate transport of angular ۲ momentum: $\alpha \sim [10^{-6} - 10^{-4}]$ Stoll & Kley 14, Richard+ 16

Linear instability in **3D** axisymmetric disks driven by vertical shear $(\partial \Omega / \partial z \neq 0)$ ۲ and rapid thermal diffusion Urpin & Branderburg 98, Nelson+ 13, Barker & Latter 15...

vertical shear due to radial stratification

t due to radial stratification cf. thermal wind equation: $R\frac{\partial\Omega^2}{\partial z} = -\mathbf{e}_{\varphi} \cdot \frac{\nabla\rho \times \nabla P}{\rho^2} = \frac{\partial T}{\partial R}\frac{\partial S}{\partial z} - \frac{\partial T}{\partial z}\frac{\partial S}{\partial R}$

- Both conditions allow to violate Solberg-Høiland's second stability criterion ۲
- Disk analogue of the Goldreich-Schubert-Fricke double diffusive instability ۲ in stars, and of the baroclinic instability in geophysics
 - Talk by **A. Barker** next week
- **Inertial** waves destabilized by z-shear
- Moderate transport of angular ۲ momentum: $\alpha \sim [10^{-6} - 10^{-4}]$ Stoll & Kley 14, Richard+16
- Non-linear saturation into RWIinduced **vortices**?

Subcritical baroclinic instability (SBI)

- Non-linear instability driven by a radially decreasing entropy profile $(N_R^2 < 0)$ and rapid thermal diffusion in the presence of non-axisymmetric perturbations Klahr & Bodenheimer 03, Petersen+ 07, Lesur & Papaloizou 10, Barge+ 16...
 - * $N_R^2 < 0$ for fluid particles to be **buoyantly accelerated** along the radial branches of the vortex's streamlines
 - rapid thermal diffusion along azimuthal branches to maintain radial entropy gradient across vortex

→ vortex **strengthens**

$$\frac{D\omega_z}{Dt} \equiv \frac{(\nabla \rho \times \nabla \mathbf{T}) \cdot \hat{\mathbf{z}}}{\rho}$$

"baroclinic term"

Subcritical baroclinic instability (SBI)

- Non-linear instability driven by a radially decreasing entropy profile $(N_R^2 < 0)$ and rapid thermal diffusion in the presence of non-axisymmetric perturbations Klahr & Bodenheimer 03, Petersen+ 07, Lesur & Papaloizou 10, Barge+ 16...
 - * $N_R^2 < 0$ for fluid particles to be **buoyantly accelerated** along the radial branches of the vortex's streamlines
 - rapid thermal diffusion along azimuthal branches to maintain radial entropy gradient across vortex

→ vortex **strengthens**

$$\frac{D\omega_z}{Dt} \equiv \frac{(\nabla \rho \times \nabla \mathbf{T}) \cdot \mathbf{\hat{z}}}{\rho}$$
"baroclinic term"

- Can both criteria for SBI be met **simultaneously** in disks?
- SBI vortices excite density waves that extract angular momentum away from vortex (α ≤ 10⁻³), vortices thus move radially inwards!
 Paardekooper+ 10
- Long-term evolution of SBI vortices?

Convective over stability (COS)

• Linear sibling of the SBI in **3D** axisymmetric disks Klat

Klahr & Hubbard 14, Lyra 14, Latter 16

- * fluid particles now follow **horizontal epicyclic motions** instead of vortex streamlines
- growth rate of instability: $\omega_i \approx -\Omega \left(\frac{N_R}{\Omega}\right)^2 \frac{\Omega \tau_c}{1 + \Omega^2 \tau_c^2}$

* hence the condition $N_R^2 < 0$ for **growth**, which is **fastest** for $\Omega \tau_{\rm c} \sim 1$

- Connection to Vertical Shear Instability?
- Non-linear saturation into SBI vortices?

• Linear instability resulting from the competition between gas **self-gravity**

• Linear instability resulting from the competition between gas self-gravity, pressure forces

• Linear instability resulting from the competition between gas self-gravity, pressure forces and differential rotation

dispersion relation of the linearised governing equations:

$$(\underline{\omega - m\Omega})^2 = \underline{\kappa}^2 - 2\pi G\Sigma |k| + k^2 c_s^2$$
$$= \tilde{\omega}^2(k)$$

with ω the wave frequency m the azimuthal wavenumber k the radial wave-vector κ the radial epicyclic frequency: $\kappa^2 = \frac{1}{R^3} \frac{dj^2}{dR} \equiv \Omega^2$

• Linear instability resulting from the competition between gas self-gravity, pressure forces and differential rotation

dispersion relation of the linearised governing equations:

$$\frac{(\omega - m\Omega)^2}{= \tilde{\omega}^2(k)} = \frac{\kappa^2}{\Omega^2} - 2\pi G\Sigma |k| + k^2 c_{\rm s}^2 \quad \text{is minimum for } |k| = \frac{\pi G\Sigma}{c_{\rm s}^2}$$

that minimum is equal to
$$\Omega^2 \times \frac{Q^2 - 1}{Q^2}$$
 with $Q = \frac{c_s \Omega}{\pi G \Sigma}$ the Toomre parameter
< 0 for Q < 1

• Linear instability resulting from the competition between gas self-gravity, pressure forces and differential rotation. It requires:

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma} < 1$$

Toomre 64

- Instability criterion more likely met in the early (≤ 10⁵ yr) evolution of massive (M_{disk} ≥ 0.1 M_★) disks, typically at R ≥ 30-50 au from the star
- Non-linear evolution depends on the disk's cooling timescale
 Gammie 01

• Linear instability resulting from the competition between gas self-gravity, pressure forces and differential rotation. It requires:

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma} < 1$$

Toomre 64

- Instability criterion more likely met in the early (≤ 10⁵ yr) evolution of massive (M_{disk} ≥ 0.1 M_★) disks, typically at R ≥ 30-50 au from the star
- Non-linear evolution depends on the disk's cooling timescale

1) $au_{
m cool}\Omega\lesssim 3-5$

→ the disk **fragments** and breaks up into bound **clumps** with typical mass \ge **M**_{Jupiter}

• Linear instability resulting from the competition between gas self-gravity, pressure forces and differential rotation. It requires:

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma} < 1$$

Toomre 64

- Instability criterion more likely met in the early (≤ 10⁵ yr) evolution of massive (M_{disk} ≥ 0.1 M_★) disks, typically at R ≥ 30-50 au from the star
- Non-linear evolution depends on the disk's cooling timescale

1) $au_{
m cool}\Omega\lesssim 3-5$

→ the disk **fragments** and breaks up into bound **clumps** with typical mass ≥ **M**_{Jupiter}

→ internal and orbital **evolutions**?

• Linear instability resulting from the competition between gas self-gravity, pressure forces and differential rotation. It requires:

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma} < 1$$

Toomre 64

- Instability criterion more likely met in the early (≤ 10⁵ yr) evolution of massive (M_{disk} ≥ 0.1 M_★) disks, typically at R ≥ 30-50 au from the star
- Non-linear evolution depends on the disk's cooling timescale

2) $au_{
m cool}\Omega\gtrsim 3-5$

→ the disk reaches a quasi steady-state with **turbulent** mass **accretion** mediated by spiral **waves**

• Linear instability resulting from the competition between gas self-gravity, pressure forces and differential rotation. It requires:

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma} < 1$$

Toomre 64

- Instability criterion more likely met in the early (≤ 10⁵ yr) evolution of massive (M_{disk} ≥ 0.1 M_★) disks, typically at R ≥ 30-50 au from the star
- Non-linear evolution depends on the disk's cooling timescale

2) $au_{
m cool}\Omega\gtrsim 3-5$

→ the disk reaches a quasi steady-state with **turbulent** mass **accretion** mediated by spiral **waves**... at a rate possibly ≠ from the prediction of an "alpha" disk model (depends on disk mass)

Balbus & Papaloizou 99, Cossins+ 09...

Linear instability resulting from the competition between gas self-gravity, ۲ pressure forces and differential rotation. It requires:

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma} < 1$$

Toomre 64

- Instability **criterion** more likely met in the **early** ($\leq 10^5$ yr) evolution of ۲ **massive** ($M_{disk} \ge 0.1 M_{\star}$) disks, typically at R \ge 30-50 au from the star
- Non-linear evolution depends on the disk's **cooling** timescale ۲

۲

Gravitational instability (GI): take away

• GI can be active in the **outer** (>30 AU) parts of **young**, still **massive** disks

→ outcome still uncertain: does GI always lead to fragmentation?

alpha viscous model of self-gravitating disk in thermal equilibrium

Hydrodynamical instabilities: take away

name	linear?	driver	non-linear evolution
Gravitational instability	\checkmark	Q ≲ 1	density waves fragmentation
Rossby wave instability	\checkmark	extremum of $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)^{2/\gamma}$	V
Subcritical baroclinic instability	×	$\nabla_{\rm r} {\bf S} < {\bf 0}$	R
Convective over stability	 ✓	$\nabla_{\mathbf{r}}\mathbf{S} < 0$	T I C
Vertical shear instability	\checkmark	$\nabla_{\rm r} S < 0$ or $\nabla_{\rm r} T < 0$	E S

and short thermal diffusion / cooling timescale for all

Hydrodynamical instabilities: take away

name	linear?	driver	non-linear evolution
Gravitational instability	\checkmark	Q ≲ 1	density waves fragmentation
Rossby wave instability	\checkmark	extremum of $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)^{2/\gamma}$	V
Subcritical baroclinic instability	×	$\nabla_{\mathbf{r}}\mathbf{S} < 0$	R
Convective over stability		$\nabla_{\rm r} {\rm S} < 0$	T I C
Vertical shear instability	\checkmark	$\nabla_{\rm r} \frac{{\bf S}}{{\rm or}} < 0$ $\nabla_{\rm r} {\bf T} < 0$	E S

! there may be **other** hydrodynamical instabilities in disks !

see, e.g., reviews by Fromang & Lesur 17, Lyra & Umurhan 19...